answer is 13 but I can't understand the question
I think there is no correct answer in this question!
you can solve this by analytic geometry rules easily!!
Answer:
A tree with a height of 6.2 ft is 3 standard deviations above the mean
Step-by-step explanation:
⇒
statement: A tree with a height of 5.4 ft is 1 standard deviation below the mean(FALSE)
an X value is found Z standard deviations from the mean mu if:

In this case we have: 

We have four different values of X and we must calculate the Z-score for each
For X =5.4\ ft

Therefore, A tree with a height of 5.4 ft is 1 standard deviation above the mean.
⇒
statement:A tree with a height of 4.6 ft is 1 standard deviation above the mean.
(FALSE)
For X =4.6 ft

Therefore, a tree with a height of 4.6 ft is 1 standard deviation below the mean
.
⇒
statement:A tree with a height of 5.8 ft is 2.5 standard deviations above the mean
(FALSE)
For X =5.8 ft

Therefore, a tree with a height of 5.8 ft is 2 standard deviation above the mean.
⇒
statement:A tree with a height of 6.2 ft is 3 standard deviations above the mean.
(TRUE)
For X =6.2\ ft

Therefore, a tree with a height of 6.2 ft is 3 standard deviations above the mean.
Answer:
11
Step-by-step explanation:
The first thing you do is to find the lowest common multiple of 5 and 7.What you do on the bottom, you must do on the top 25/35 / 28/35. The answer is 25/28. Sara ran 25/28 of the total distance around the track.
Since the dice are fair and the rolling are independent, each single outcome has probability 1/15. Every time we choose

We have
and
, because the dice are fair.
Now we use the assumption of independence to claim that

Now, we simply have to count in how many ways we can obtain every possible outcome for the sum. Consider the attached table: we can see that we can obtain:
- 2 in a unique way (1+1)
- 3 in two possible ways (1+2, 2+1)
- 4 in three possible ways
- 5 in three possible ways
- 6 in three possible ways
- 7 in two possible ways
- 8 in a unique way
This implies that the probabilities of the outcomes of
are the number of possible ways divided by 15: we can obtain 2 and 8 with probability 1/15, 3 and 7 with probability 2/15, and 4, 5 and 6 with probabilities 3/15=1/5