Answer:
option B
Explanation:
given,
height of building = 0.1 km
ball strikes horizontally to ground at = 65 m
speed at which the ball strike = ?
vertical velocity = 0 m/s
time at which the ball strike



t = 4.53 s
vertical velocity at the time 4.53 s = g × t = 9.8 × 4.53 = 44.39 m/s
horizontal velocity =
=14.35 m/s
speed of the ball =
= 46.65 m/s
hence, the speed of the ball just before it strike the ground = 47 m/s
The correct answer is option B
Answer:
(a) 4.0334Ω
(b)parallel
Explanation:
for resistors connected in parallel;

Req =3.03Ω , R1 =12.18Ω



R2=1/0.2479
R2=4.0334Ω
(b)parallel connection is suitable for the desired total resistance. series connection can not be used to achieve a lower resistance as the equation for series connection is.
Req = R1+R2
The velocity is 4374.45 m/s.
I got the answer by using v=d/t.
20,000meters / 25min= 4,374.45 m/s.
Answer:
The force is 15N
Explanation:
The formula is Force= mass × velocity.
From the question mass is 5kg, velocity is 3m/s.
F= 5×3
F= 15Newton.
Therefore the force is 15N.
Answer:
19.99 kg m²/s
Explanation:
Angular Momentum (L) is defined as the product of the moment of Inertia (I) and angular velocity (w)
L = m r × v.
r and v are perpendicular to each other,
where r = lsinθ.
l = 2.4 m
θ= 34°
g = 9.8 m/s² and m = 5 kg
resolving using newtons second law in the vertical and horizontal components.
T cos θ − m g = 0
T sin θ − mw² lsin θ = 0
where T is the force with which the wire acts on the bob
w = √g / lcosθ
= √ 9.8 / 2.4 ×cos 34
= 2.2193 rad/s
the angular momentum L = mr× v
= mw (lsin θ)²
= 5 × 2.2193 (2.4 ×sin 34°)²
=19.99 kg m²/s