Answer:
a) x = v₀² sin 2θ / g
b) t_total = 2 v₀ sin θ / g
c) x = 16.7 m
Explanation:
This is a projectile launching exercise, let's use trigonometry to find the components of the initial velocity
sin θ =
/ vo
cos θ = v₀ₓ / vo
v_{oy} = v_{o} sin θ
v₀ₓ = v₀ cos θ
v_{oy} = 13.5 sin 32 = 7.15 m / s
v₀ₓ = 13.5 cos 32 = 11.45 m / s
a) In the x axis there is no acceleration so the velocity is constant
v₀ₓ = x / t
x = v₀ₓ t
the time the ball is in the air is twice the time to reach the maximum height, where the vertical speed is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
t = v_{o} sin θ / g
we substitute
x = v₀ cos θ (2 v_{o} sin θ / g)
x = v₀² /g 2 cos θ sin θ
x = v₀² sin 2θ / g
at the point where the receiver receives the ball is at the same height, so this coincides with the range of the projectile launch,
b) The acceleration to which the ball is subjected is equal in the rise and fall, therefore it takes the same time for both parties, let's find the rise time
at the highest point the vertical speed is zero
v_{y} = v_{oy} - gt
v_{y} = 0
t = v_{oy} / g
t = v₀ sin θ / g
as the time to get on and off is the same the total time or flight time is
t_total = 2 t
t_total = 2 v₀ sin θ / g
c) we calculate
x = 13.5 2 sin (2 32) / 9.8
x = 16.7 m
The energy is 3.06 electronvolts, E = 3.06eV
1eV = 1.6 * 10^-19 J
3.06 eV = 3.06* 1.6 * 10^-19 J = 4.896 * 10^-19 J
Answer:
Explanation:
To find out the angular velocity of merry-go-round after person jumps on it , we shall apply law of conservation of ANGULAR momentum
I₁ ω₁ + I₂ ω₂ = ( I₁ + I₂ ) ω
I₁ is moment of inertia of disk , I₂ moment of inertia of running person , I is the moment of inertia of disk -man system , ω₁ and ω₂ are angular velocity of disc and man .
I₁ = 1/2 mr²
= .5 x 175 x 2.13²
= 396.97 kgm²
I₂ = m r²
= 55.4 x 2.13²
= 251.34 mgm²
ω₁ = .651 rev /s
= .651 x 2π rad /s
ω₂ = tangential velocity of man / radius of disc
= 3.51 / 2.13
= 1.65 rad/s
I₁ ω₁ + I₂ ω₂ = ( I₁ + I₂ ) ω
396.97 x .651 x 2π + 251.34 x 1.65 = ( 396.97 + 251.34 ) ω
ω = 3.14 rad /s
kinetic energy = 1/2 I ω²
= 3196 J
Explanation:
When m=<em>mass</em>
G=<em>a</em><em>c</em><em>c</em><em>e</em><em>l</em><em>e</em><em>r</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>d</em><em>u</em><em>e</em><em> </em><em>t</em><em>o</em><em> </em><em>gravity</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>H</em><em>=</em><em>h</em><em>e</em><em>i</em><em>g</em><em>h</em><em>t</em>
<em>U</em><em>s</em><em>i</em><em>n</em><em>g</em><em> </em><em>f</em><em>o</em><em>r</em><em>m</em><em>u</em><em>l</em><em>a</em>
<em>M</em><em>g</em><em>h</em>
<em>(</em><em>M</em><em>=</em><em>6</em><em>, </em><em>g</em><em>=</em><em>10</em><em>,</em><em>h</em><em>=</em><em>?</em><em>) </em>
6×10×h
=60joules
Answer:
To derive the fourth equation of motion, first we have to consider the equation for acceleration and then to rearrange it. or v2 = u2 + 2as and this equation of motion can be used to find the final velocity or the distance travelled if the other values are given.
Explanation:
v= u + at
s =( u + v ) t /2
s = ut + at2/2
v2 = u2 + 2as