Answer:
a = 3.125 [m/s^2]
Explanation:
In order to solve this problem, we must use the following equation of kinematics. But first, we have to convert the speed of 90 [km/h] to meters per second.


where:
Vf = final velocity = 25 [m/s]
Vi = initial velocity = 0
a = acceleration [m/s^2]
t = time = 8 [s]
The initial speed is zero as the bus starts to koverse from rest. The positive sign of the equation means that the bus increases its speed.
25 = 0 + a*8
a = 3.125 [m/s^2]
Answer:
True
Explanation:
The image produced a convex mirror is always virtual irrespective of location. The size of the image is always smaller than the object. In a plane mirror the distance of the object and the distance of the image is same. But in a convex the image distance is always less than the object distance.
So, this statement is true.
lovely question hope 7 solve it
Explanation:
Answer:
1500 m/s
Explanation:
Recall that for a wave,
Speed = frequency x wavelength
here we are given frequency = 500 Hz and wavelength = 3m
simply substitute into above equation
Speed = 500 Hz x 3m
= 1500 m/s
Answer:
The pickup truck and hatchback will meet again at 440.896 m
Explanation:
Let us assume that both vehicles are at origin at the start means initial position is zero i.e.
= 0. Both the vehicles will cross each other at same time so we will make equations for both and will solve for time.
Truck:
= 33.2 m/s, a = 0 (since the velocity is constant),
= 0
Using 
s = 33.2t .......... eq (1)
Hatchback:
,
= 0 m/s (since initial velocity is zero),
= 0
Using 
putting in the data we will get

now putting 's' value from eq (1)

which will give,
t = 13.28 s
so both vehicles will meet up gain after 13.28 sec.
putting t = 13.28 in eq (1) will give
s = 440.896 m
So, both vehicles will meet up again at 440.896 m.