Answer: 91.94 kg
Explanation: Supoose Al's mass is m. The combined mass is 168kg, so Jo's mass is 168 - m.
The Law of Conservation of Momentum states that when two objects collide, the total momentum of both objects before the collision is the same as the total momentum of both objects after the collision.
At the beginning, Al and Jo are united without movement, so their initial momentum is zero.
After the release of their hands, Al goes in one direction and Jo moves to the opposite direction. Suppose the direction Al is moving is positive. Conservation of momentum will be

where
index i referes to initial momentum
index f to final momentum
index 1 refers to Al
index 2 to Jo
Calculating:
![m(0.91)-[(168-m)(1.1)]=0](https://tex.z-dn.net/?f=m%280.91%29-%5B%28168-m%29%281.1%29%5D%3D0)


m = 91.94
Al has a mass of 91.94 kg.
Answer:
1.been both -ve charged or both +be charged particles
2. 3.52mC
Explanation:
For the charge particle to cause an extension or movement of the string from its unrestrained position they would have been both -ve charged or both +be charged particles that's because like charges repel.
Now the Force sustain by the extended string is
F = Ke;
Where K is the force constant of the string, 320 N/m
e is the extension,0.033 m
F = 320 × 0.033 =10.56N
2.But according to columns law of charge;
F = kQ1 Q2
But Q1=Q2{ since the charge are of the same magnitude}.
Hence F = KQ^2
Where K is columns constant =9×10^9F/m
Hence Q=√F/K
Q= √10.56/9×10^9
=3.52×10^-3C
= 3.52mC
Answer:
How does Hooke’s law help us understand the force and energy in elastic materials?:
When the elastic materials are stretched, the atoms and molecules deform until stress is been applied and when the stress is removed they return to their initial state
Explanation:
Answer: 800 km/h
Explanation:
Use equation for average speed
V=S/t
where S is distance
t is time
S=4800Km
t=6h
---------
V=S/t
V=4800Km/6h=800 Km/h
Gradational force, but i’m not sure