Answer:
Water and Oxides such as iron oxide or rust
Explanation:
Report this clown who put the first answer he’s trying to get your ip
The speed of cart b is 6m/s while the total momentum of the systmen is 4200 kg m/s
<h3>Conservation of Linear Momentum</h3>
Given Data
- Mass of cart one M1 = 150kg
- Initial Velocity U1 = 8m/s
Mass of cart two M2 = 150kg
Velocity U2 = 6m/s
Applying the principle of conservation of linear momentum we have
M1U1+M2U2 = M1V1+ M2V2
a. what is the speed of cart b after collision
substituting our given data we have
150*8+ 150*6 = 150*5+150*V2
1200 + 900 = 1200+ 150V2
2100 - 1200 = 150V2
900 = 150V2
Divide both sides by 150
V2 = 900/150
V2 = 6m/s
b. what is the total momentum of the system before and after collision
Total Momentum in the system is
Total momentum = Momentum before Impact+ Momentum after Impact
Total momentum = M1U1+M2U2 + M1V1+ M2V2
Total momentum = 1200 + 900 + 1200+ 900
Total momentum = 4200 kg m/s
Learn more about Conservation of Linear Momentum here:
brainly.com/question/7538238
Answer:
The pressure of the remaining gas in the tank is 6.4 atm.
Explanation:
Given that,
Temperature T = 13+273=286 K
Pressure = 10.0 atm
We need to calculate the pressure of the remaining gas
Using equation of ideal gas

For a gas

Where, P = pressure
V = volume
T = temperature
Put the value in the equation
....(I)
When the temperature of the gas is increased
Then,
....(II)
Divided equation (I) by equation (II)





Hence, The pressure of the remaining gas in the tank is 6.4 atm.
metamorphic, sedimentary, igneous