Answer:
Option D: 1.5in in front of the target
Explanation:
The object distance is
.
Because the surface is flat, the radius of curvature is infinity .
The incident index is
and the transmitted index is
.
The single interface equation is 
Substituting the quantities given in the problem,

The image distance is then 
Therefore, the coin falls
in front of the target
We have that the maximum height reached by the basketball from its release point is

From the question we are told
- A basketball is tossed upwards with a speed of 5.0 m/s. We can ignore air resistance.
- What is the maximum height reached by the basketball from its release point?
Generally the Newtons equation for Motion is mathematically given as


Therefore
The maximum height reached by the basketball from its release point is

For more information on this visit
brainly.com/question/23366835
Answer:
It is producing either a 435-Hz sound or a 441-Hz sound.
Explanation:
When two sound of slightly different frequencies interfere constructively with each other, the resultant wave has a frequency (called beat frequency) which is equal to the absolute value of the difference between the individual frequencies:
(1)
In this problem, we know that:
- The frequency of the first trombone is 
- 6 beats are heard every 2 seconds, so the beat frequency is

If we insert this data into eq.(1), we have two possible solutions for the frequency of the second trombone:
