The answer is C. 1
You can just plug in the different answers for x and see which one equals zero.
F(1) = 1 + 4 + 1 - 6 = 0
Answer:
See explanation
Step-by-step explanation:
1. Given the expression
![\dfrac{\sqrt[7]{x^5} }{\sqrt[4]{x^2} }](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B7%5D%7Bx%5E5%7D%20%7D%7B%5Csqrt%5B4%5D%7Bx%5E2%7D%20%7D)
Note that
![\sqrt[7]{x^5}=x^{\frac{5}{7}} \\ \\\sqrt[4]{x^2}=x^{\frac{2}{4}}=x^{\frac{1}{2}}](https://tex.z-dn.net/?f=%5Csqrt%5B7%5D%7Bx%5E5%7D%3Dx%5E%7B%5Cfrac%7B5%7D%7B7%7D%7D%20%5C%5C%20%5C%5C%5Csqrt%5B4%5D%7Bx%5E2%7D%3Dx%5E%7B%5Cfrac%7B2%7D%7B4%7D%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)
When dividing
by
we have to subtract powers (we cannot subtract 4 from 7, because then we get another expression), so

and the result is ![x^{\frac{3}{14}}=\sqrt[14]{x^3}](https://tex.z-dn.net/?f=x%5E%7B%5Cfrac%7B3%7D%7B14%7D%7D%3D%5Csqrt%5B14%5D%7Bx%5E3%7D)
2. Given equation ![3\sqrt[4]{(x-2)^3} -4=20](https://tex.z-dn.net/?f=3%5Csqrt%5B4%5D%7B%28x-2%29%5E3%7D%20-4%3D20)
Add 4:
![3\sqrt[4]{(x-2)^3} -4+4=20+4\\ \\3\sqrt[4]{(x-2)^3}=24](https://tex.z-dn.net/?f=3%5Csqrt%5B4%5D%7B%28x-2%29%5E3%7D%20-4%2B4%3D20%2B4%5C%5C%20%5C%5C3%5Csqrt%5B4%5D%7B%28x-2%29%5E3%7D%3D24)
Divide by 3:
![\sqrt[4]{(x-2)^3} =8](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%28x-2%29%5E3%7D%20%3D8)
Rewrite the equation as:

Hence,

In 1 hr the bus would have traveled 48.5 miles
The answer is B, hope this helped
The simplification of the given algebraic expression is;
yz = (z + 1)/z(z - 1)
<h3>How to simplify algebraic expressions?</h3>
We are given y left parenthesis z right parenthesis which is expressed as; yz
Now, we are given the algebraic expression that yz equals space fraction numerator z squared minus 1 over denominator z left parenthesis z minus 1 right parenthesis squared end fraction
z squared minus 1 over denominator z left parenthesis z minus 1 right parenthesis squared end fraction is expressed as; (z² - 1)/z(z - 1)²
Thus, our main expression is;
yz = (z² - 1)/z(z - 1)²
Factorizing the numerator and denominator gives;
yz = (z + 1)(z - 1)/z(z - 1)(z - 1)
(z - 1) is common to both numerator and denominator and as such, we now have;
yz = (z + 1)/z(z - 1)
Read more about Algebraic Expressions at; brainly.com/question/4344214
#SPJ4