Answer:
310.53 g of Cu.
Explanation:
The balanced equation for the reaction is given below:
CuSO₄ + Zn —> ZnSO₄ + Cu
Next, we shall determine the mass of CuSO₄ that reacted and the mass Cu produced from the balanced equation. This can be obtained as follow:
Molar mass of CuSO₄ = 63.5 + 32 + (16×4)
= 63.5 + 32 + 64
= 159.5 g/mol
Mass of CuSO₄ from the balanced equation = 1 × 159.5 = 159.5 g
Molar mass of Cu = 63.5 g/mol
Mass of Cu from the balanced equation = 1 × 63.5 = 63.5 g
Summary:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Finally, we shall determine the mass of Cu produced by the reaction of 780 g of CuSO₄. This can be obtained as follow:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Therefore, 780 g of CuSO₄ will react to produce = (780 × 63.5)/159.5 = 310.53 g of Cu.
Thus, 310.53 g of Cu were obtained from the reaction.
Carbon dioxide can be the cause of burning carbon dioxide and a stove it depends on the heat of the flame in order for carbon dioxide to become carbon monoxide
sorry hope that helps though
Answer:
1.76 g/mL
Explanation:
You need to find the volume. You can do this by subtracting the volume of the water and the rock by the volume of the water.
72.7 mL - 50 mL = 22.7 mL
Now that you have volume, divide the mass by the volume to find the density.
39.943 g/22.7 mL = 1.76 g/mL
Answer:
B) Thomson's Model
Explanation:
Dalton's Model simply consisted of small spheres that represented atoms, and Bohr's model had a nucleus in the center with electrons orbiting in strict orbits, not randomly spread throughout. Thomson's plum pudding model, however, had an overall positively charged atom with many electrons spread throughout. If you search up "Plum Pudding Model" you can visually understand this.
If you want further tutoring help in chemistry or other subjects for FREE, check out growthinyouth.org.