Answer:
In crystal structure close packing is define as space efficient arrangement of constituent particles to form a crystal lattice.
Explanation:
closest packing
In crystal structure close packing is define as space efficient arrangement of constituent particles to form a crystal lattice.
Difference between hexagonal closest packing and cubic closest packing
In cubic closest packing arrangement, each sphere is surrounded by 12 other spheres on the other hand in case of hexagonal close packing, layers of spheres are packed so that spheres in alternating layers overlie one another.
unit cell for each closest packing arrangement
The hexagonal closest packed arrangement has a coordination number of 12 and it consists of 6 atoms per unit cell. The face centered cubic lattice has a coordination number of 12 and it consists of 4 atoms per unit cell. In case of body centered cubic crystal the coordination number is 8 and it consists of 2 atoms per unit cell.
s - orbitals have a spherical symmetry and the probability of finding an electron in an s orbital is equal for equal distance in x, y or z direction. i mean the probability of lets say an electron found at a distance 10 units from nuclues, its value will be same for x, y and z when u go 10 units distnace from nucleus in these directions. then the value at 5 units would be some value which also would be same for x,y and z.
Easier explanation is that if u place a ball, can u tell towards which axis it is oriented? no, its equally in all directions. So, non- directional.
However, if you have p- orbitals like dumb bells, a dumb bell can be oriented in three different directions, either x or y or z. see the pics.
Answer:
2.5 × 10² ppm
Explanation:
Step 1: Given data
- Mass of the sample: 200. g
Step 2: Convert 0.050 g to μg
We will use the conversion factor 1 g = 10⁶ μg.
0.050 g × 10⁶ μg/1 g = 5.0 × 10⁴ μg
Step 3: Calculate the concentration of NaCl in ppm
The concentration of NaCl in ppm is equal to the micrograms of NaCl per gram of the sample.
5.0 × 10⁴ μg NaCl/200. g = 2.5 × 10² ppm