The question is incomplete. The mass of the object is 10 gram and travelling at a speed of 2 m/s.
Solution:
It is given that mass of object before explosion is,m = 10 g
Speed of object before explosion, v = 2 m/s
Let be the masses of the three fragments.
Let be the velocities of the three fragments.
Therefore, according to the law of conservation of momentum,
So the x- component of the velocity of the m2 fragment after the explosion is,
∴
Answer: • using beaker tongs to handle the hot beaker.
• checking the beaker for chips prior to heating on the hot plate.
• Turning off the hot plate after use
Explanation:
The options that will ensure laboratory safety during the experiment will be:
• using beaker tongs to handle the hot beaker.
• checking the beaker for chips prior to heating on the hot plate.
• Turning off the hot plate after use.
We should note that the beaker tongs are simply used in the holding of the beakers that have hot liquids in them. Also, it s vital for the hot plate to be turned off after its use so as to prevent accident.
To solve this exercise, it is necessary to apply the concepts of conservation of the moment especially in objects that experience an inelastic colposition.
They are expressed as,
Where,
= mass of the skier
= mass of the cat
= initial velocity of skier
= initial velocity of cat
= final velocity of both
Re-arrange to find V_f we have,
Once the final velocity is found it is possible to calculate the change in kinetic energy, so
Therefore the amount of kinetic energy converted in to internal energy is 819J
There is a threshold frequency for each metal, and only light of a frequency higher than this threshold causes electrons to be emitted from the metal surface.
Answer:
A) 31 kJ
B) 1.92 KJ
C) 40 , 2.48
Explanation:
weight of person ( m ) = 79 kg
height of jump ( h ) = 0.510 m
Compression of joint material ( d ) = 1.30 cm ≈ 0.013 m
A) calculate the force
Fd = mgh
F = mgh / d
W = mg
F(net) = W + F = mg ( 1 +
= 79 * 9.81 ( 1 + (0.51 / 0.013) )
= 774.99 ( 40.231 ) ≈ 31 KJ
B) calculate the force when the stopping distance = 0.345 m
d = 0.345 m
Fd = mgh hence F = mgh / d
F(net) = W + F = mg ( 1 +
= 79 * 9.81 ( 1 + (0.51 / 0.345) )
= 774.99 ( 2.478 ) = 1.92 KJ
C) Ratio of force in part a with weight of person
= 31000 / ( 79 * 9.81 ) = 31000 / 774.99 = 40
Ratio of force in part b with weight of person
= 1920 / 774.99 = 2.48