The concept that we need here to give a proper solution is mutual inductance.
The mutual inductance is given by the expression

Where,
I = current
N = Number of turns
Flux through the solenoid.
Part A) Then we have in our values that,



Replacing in the equation,


Part B) Here is required the Flux, then using the same expression we have that

We conserve the same value for the Inductance but now we have a current of 2.6, then


Therefore the flux in Solenoid 1 is 
Answer:
B Both are directly related to movement.
The tank has a volume of
, where
is its height and
is its radius.
At any point, the water filling the tank and the tank itself form a pair of similar triangles (see the attached picture) from which we obtain the following relationship:

The volume of water in the tank at any given time is

and can be expressed as a function of the water level alone:

Implicity differentiating both sides with respect to time
gives

We're told the water level rises at a rate of
at the time when the water level is
, so the net change in the volume of water
can be computed:

The net rate of change in volume is the difference between the rate at which water is pumped into the tank and the rate at which it is leaking out:

We're told the water is leaking out at a rate of
, so we find the rate at which it's being pumped in to be


Answer:
Explanation:
There are three basic ways to increase the likelihood of safely dropping an egg:
Slow down the descent speed.
Parachutes are an obvious method for slowing the decent speed, as long as the design includes a way to keep the parachute open.
Cushion the egg so that something other than the egg itself absorbs the impact of landing.
The largest end of the egg has an area of air trapped between the egg's two membranes. This air space forms when the contents of the egg cool and contract after the egg is laid. It accounts for the crater you often see at the end of a hard-cooked egg. Upon impact the heavier spherical yolk continues moving towards the ground. The compression of the airspace acts like an air bag for the eggs' valuable contents. Building an artificial cushioning device will also help absorb the impact of landing.
The largest end of the egg has an area of air trapped between the egg's two membranes. This air space forms when the contents of the egg cool and contract after the egg is laid. It accounts for the crater you often see at the end of a hard-cooked egg. Upon impact the heavier spherical yolk continues moving towards the ground. The compression of the airspace acts like an air bag for the eggs' valuable contents. Building an artificial cushioning device will also help absorb the impact of landing.
Orient the egg so that it lands on the strongest part of the shell.
The arch structure at either end of the egg is stronger than its sides. Pressure is distributed down (or up) the arches so that less pressure acts on any one point. Orienting the arch downwards will increase the egg's survival.
Hope this helps you