Answer:
By convention a negative torque leads to clockwise rotation and a positive torque leads to counterclockwise rotation.
here weight of the child =21kgx9.8m/s2 = 205.8N
the torque exerted by the child Tc = - (1.8)(205.8) = -370.44N-m ,negative sign is inserted because this torque is clockwise and is therefore negative by convention.
torque exerted by adult Ta = 3(151) = 453N , counterclockwise torque.
net torque Tnet = -370.44+453 =82.56N , which is positive means counterclockwise rotation.
b) Ta = 2.5x151 = 377.5N-m
Tnet = -370.44+377.5 = 7.06N-m , positive ,counterclockwise rotation.
c)Ta = 2x151 = 302N-m
Tnet = -370.44+302 = -68.44N-m, negative,clockwise rotation.
 
        
             
        
        
        
This would happen later at night or early in the morning. 
The reason being land becomes warm and cold quicker than the water because of the heat capacity. So during the day water warms up because of sunlight but at night the land becomes a lot cooler as compared to the water which is still war. So the air over water is significantly warmer than the air over land.
 
        
                    
             
        
        
        
Part (a): Velocity of the snowball
By conservation of momentu;
m1v1 + m2v2 = m3v3,
Where, m1 = mass of snowball, v1, velocity of snowball, m2 = mass of the hat, v2 = velocity of the hat, m3 = mass of snowball and the hat, v3 = velocity of snowball and the hut.
v2 = 0, and therefore,
85*v1 + 0 = 220*8 => v1 = 220*8/85 = 20.71 m/s
Part (b): Horizontal range
x = v3*t
But,
y = vy -1/2gt^2, but y = -1.5 m (moving down), vy =0 (no vertical velocity), g = 9.81 m/s^2
Substituting;
-1.5 = 0 - 1/2*9.81*t^2
1.5 = 4.905*t^2
t = Sqrt (1.5/4.905) = 0.553 seconds
Then,
x = 8*0.553 = 4.424 m
        
             
        
        
        
Answer:
 29.96m/s
Explanation:
Given parameters: 
Initial speed  = 25.5m/s 
Acceleration  = 1.94m/s²
Time  = 2.3s
Unknown: 
Final speed of the car  = ? 
Solution: 
To solve this problem, we are going to apply the right motion equation: 
     v = u  + at 
v is the final speed
u is the initial speed
a is the acceleration
t is the time taken
  Now insert the parameters and solve; 
       v  = 25.5 + (1.94 x 2.3)  =  29.96m/s