Answer:
B
Explanation:
Slope = rise/run = -2/2 = -1
Answer:
Conrad had 56 sales on Monday , 168 sales on Tuesday and 504 sales on Wednesday.
Step-by-step explanation:
Let x be the no. of sales on Monday
We are given that On Tuesday Conrad had 3 times as many sales as on Monday.
So, Conrad had sales on Tuesday = 3x
We are also given that On Wednesday, he had 9 times as many sales as on Monday.
So, Conrad had sales on Wednesday = 9x
Over the three days, he had a total of 728 sales
So, x+3x+9x=728
13x=728

x=56
Conrad had sales on Tuesday = 3x =3(56)=168
Conrad had sales on Wednesday = 9x=9(56)=504
Hence Conrad had 56 sales on Monday , 168 sales on Tuesday and 504 sales on Wednesday.
Answer:
b. 4x = 48
Step-by-step explanation:
If you look closely an multiply 4 x 8, it equals 32, not 48
The other equations:
8 x 8 does equal 64
10 x 8 does equal 80
9 x 8 does equal 72
It's pretty simple once you try each problem first
Hope this helps!
To determine the number of possible arrangements for 6 out of 8, we should use combinations. That is
ₐC₆ = 8!/(6!2!)
Answer: b. Combination
Based on the box plots, the statement which is correct is that: A. The median score of Class A is greater than the median score of Class B.
<h3>What is a box and whisker plot?</h3>
In Mathematics, a box plot is also referred to as box and whisker plot and it can be defined as a type of chart that can be used to graphically or visually represent the five-number summary of a data set with respect to locality, skewness, and spread.
Additionally, the five-number summary of any box plot (box and whisker plot) include the following:
- Minimum
- First quartile
- Median
- Third quartile
- Maximum
By critically observing the box plot (box and whisker plot) which represent the math scores of students in in two different classes, we can reasonably and logically deduce the following median scores;
Median score of class A = 80
Median score of class B = 75
Therefore, a median score of 80 in Class A is greater than the median score of 75 in Class B.
Read more on box plots here: brainly.com/question/14277132
#SPJ1