The moon, man has not been to mars yet
It would be the Aqueous solution
Answer:
12.7mol Na.
Explanation:
Hello there!
In this case, according to the concept of mole, which stands for the amount of substance, we can recall the concept of Avogadro's number whereby we understand that one mole of any substance contains 6.022x10²³ particles, for the given atoms of sodium, we can calculate the moles as shown below:

Thus, by performing the division we obtain:

Regards!
Answer:
Yes, yield.
Explanation:
N2(g) + 3 H2(g) → 2 NH3 (g) balanced equation
First, find limiting reactant:
Moles H2 = 1.83 g x 1 mole/2 g = 0.915 moles H2
Moles N2 = 9.84 g N2 x 1 mole/28 g = 0.351 moles N2
The mole ratio of H2: N2 is 3:1, so H2 is limiting (0.915 is less than 3 x 0.351)
Theoretical yield of NH3 = 0.915 mol H2 x 2 mol NH3/3 mol H2 = 0.61 moles NH3
Answer: The final volume of this solution is 0.204 L.
Explanation:
Given: Molarity of solution = 2.2 M
Moles of solute = 0.45 mol
Molarity is the number of moles of solute present divided by volume in liters.

Substitute the values into above formula as follows.

Thus, we can conclude that the final volume of this solution is 0.204 L.