Answer: 100x
Explanation:
The actual power or magnification of a compound optical microscope is the product of the powers of the ocular (eyepiece) and the objective lens. The maximum normal magnifications of the ocular and objective are 10× and 100× respectively, giving a final magnification of 1,000×.
Answer:
0.4076 g
Explanation:
Kp is the equilibrium constant based on pressure and depends only on gas substances. For a generic reaction
aA + bB ⇄ cC + dD
, where pX is the pressure of X in equilibrium.
For the reaction Kp = pCO₂
pCO₂ = 0.026 atm
The system is in equilibrium at the beginning. The compression occurs at a constant temperature, so using Boyle's law
P1V1 = P2V2
0.026*10 = P2*0.1
P2 = 2.6 atm
The reaction will reach again the equilibrium, and pCO₂ = 0.026 atm, then the rest will form MgCO₃, which will be 2.6 - 0.026 = 2.574 atm.
By the ideal gas law:
PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant (0.082 atm*L/mol*K), and T is the temperature.
2.574*0.1 = n*0.082*650
53.3n = 0.2574
n = 4.83x10⁻³ mol
The stoichiometry of the reaction is 1 mol of MgCO₃ for 1 mol of CO₂, so it will form 4.83x10⁻³ mol of MgCO₃ .
The molar mass is:
MgCO₃: 24 g/mol of Mg + 12 g/mol of C + 3*16 g/mol of O = 84 g/mol
The mass formed is the molar mass multiplied by the number of moles:
m = 84x4.83x10⁻³
m = 0.4076 g
Chemical change. You can never get back the rusted layers of metal even though you can wipe off the rust. Chemical changes are irreversible.
Answer:
The rate of dissolving of a solute in a solvent is faster when the solute and solvent are stirred, the solvent is warmer, or the solute consists of smaller particles with more surface area.
153.888 grams are in 4.8 moles of sulfur