The is will be -<span>11b3</span><span> - 16b</span>2<span> + </span>4b<span> + </span><span>3</span>
Answer: 100$.
100% - 80% = 20%
20$ / 0.20(20%) =100$
g(x)=-2
Simplfy: y=-2
x=-9
*Look at where the points intersect
Answer:
(10, 3)
Step-by-step explanation:
Solve by Substitution
2x − 4y = 8 and 7x − 3y = 61
Solve for x in the first equation.
x = 4 + 2y 7x − 3y = 61
Replace all occurrences of x with 4 + 2y in each e quation.
Replace all occurrences of x in 7x − 3y = 61 with 4 + 2y. 7 (4 + 2y) − 3y = 61
x = 4 + 2y
Simplify 7 (4 + 2y) − 3y.
28 + 11y = 61
x = 4 + 2y
Solve for y in the first equation.
Move all terms not containing y to the right side of the equation.
11y = 33
x = 4 + 2y
Divide each term by 11 and simplify.
y = 3
x = 4 + 2y
Replace all occurrences of y with 3 in each equation.
Replace all occurrences of y in x = 4 + 2y with 3. x = 4 + 2 (3)
y = 3
Simplify 4 + 2 (3).
x = 10
y = 3
The solution to the system is the complete set of ordered pairs that are valid solutions.
(10, 3)
The result can be shown in multiple forms.
Point Form:
(10, 3)
Equation Form:
x = 10, y = 3
First, let's see how 23 compares with the squares of the positive whole numbers on the number line.
1² = 1
2² = 4
3² = 9
4² = 16
5² = 25
The value of 23 is right between the square of 4 and the square of 5. Thus, the value √23 will be between 4 and 5.
Since 23 is much, much closer to the square of 5 than the square of 4, we can assume that the value √23 will be closer to 5 on the number line than 4.
Look at the attached image to see where I plotted the approximate location of √23.
You will realize that this approximation is pretty close since the actual value is roughly 4.80.
Let me know if you need any clarifications, thanks!