Object Motion: 25 m/s
Circumference of Circle:
1/4 Circumference of Circle in 1 second = 25 meters
25 meters times 4 = Circumference of Circle
Circumference = 100 meters
Formula to Find Circumference of Circle: (work opposite)
C = 2<span>πr
100 = </span>2πr divided
100/2π = r simplify
50/π = r (exact radius)
Answer:
50/π meters = r (exact radius)
Answer:
U = 0.413 J
Explanation:
the potential energy between two charges q1 and q2 is given by the following formula:
(1)
k: Coulomb's constant = 8.98*10^9 NM^2/C^2
q1: first charge = 4.6 μC = 4.6*10^-6 C
q2: second charge = 1.0 μC*10^-6 C
r: distance between charges = 10.0 cm = 0.10 m
You replace the values of all variables in the equation (1):
Hence, the energy between charges is 0.413 J
Answer: amplitude
Explanation: This describes the maximum amount of the displacement of a particle from it rest position. Usually, it is measured in metres
Since we are considering AM which is amplitude modulation, a technique used in electronic communication, most commonly for broadcasting information through a radio carrier wave. In amplitude modulation, the amplitude (signal strength) of the carrier wave is diversified in proportion to that of the message signal being broadcasted.
car starts from rest
final speed attained by the car is
acceleration of the car will be
now the time to reach this final speed will be
so it required 1.39 s to reach this final speed
We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:
where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:
When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:
But the mechanical energy must be conserved, Ef=Ei, so we have
and so, the potential energy at the top of the flight is