Answer:
c large, spherical body that orbits in a clear path around a star
Explanation:
you can not say b because the sun is a star and you cant say a and d because all planets are not made of rock and all planets are not made of gas
Weight of the child m = 50 kg
Radius of the merry -go-around r = 1.50 m
Angular speed w = 3.00 rad/s
(a)Child's centripetal acceleration will be a = w^2 x r = 3^2 x 1.50 => a = 9 x
1.5
Centripetal Acceleration a = 13.5m/sec^2
(b)The minimum force between her feet and the floor in circular path
Circular Path length C = 2 x 3.14 x 1.50 => c = 3 x 3.14 => C = 9.424
Time taken t = 2 x 3.14 / w => t = 6.28 / 3 => t = 2.09
Calculating velocity v = distance / time = 9.424 / 2.09 m/s => v = 4.5 m/s
Calculating force, from equation F x r = mv^2 => F = mv^2 / r => 50 x (4.5)^2
/ 1.5
F = 50 x 3 x 4.5 => F = 150 x 4.5 => F = 675 N
(c)Minimum coefficient of static friction u
F = u x m x g => u = F / m x g => u = 675/ 50 x 9.81 => 1.376
u = 1.376
Hence with the force and the friction coefficient she is likely to stay on merry-go-around.
The total mechanical energy of the notebook is <u><em>19J</em></u>.
Mechanical energy is the sum of potential energy and kinetic energy. It has no kinetic energy, because it's not moving. So its potential energy is all the mechanical energy it has.
Answer:
a. Approximate umber of atoms = 10¹¹
b. number of atoms = 50 atoms thick
Note: The question is missing some parts. The complete question is as follows; Calculate the approximate number of atoms in a bacterium. Assume that the average mass of an atom in the bacterium is ten times the mass of a hydrogen atom. (Hint: The mass of a hydrogen atom is on the order of 1×10⁻²⁷ kg and the mass of a bacterium is on the order of 1×10⁻¹⁵ kg)
Explanation:
a. Approximate umber of atoms = mass of bacterium / 10 * mass of hydrogen
number of atoms = 10⁻⁵/ 10 × 10⁻²⁷
number of atoms = 10¹¹ atoms
b. The cell membrane is 10-8 m thick while the hydrogen atom has a diameter of 10-10 m.
The number of atoms in the cell membrane = d1 / 2 × d2
where d1 = diameter of cell membrane; d2 = diameter of hydrogen atom
The number of atoms in the cell membrane = 10⁻ / 2 × 10⁻¹⁰ = 50 atoms
Answer:
Option d is the correct option Kinetic energy is minimum while as potential energy is maximum
Explanation:
At the top most point of the flight since it cannot reach any further up in the vertical direction thus the potential energy at this position shall be maximum. Now since the total energy of the projectile is conserved so the remaining kinetic energy shall be minimum at that point so as the sum of the kinetic and potential energies remain constant.