When light moves from a medium with higher refractive index to a medium with lower refractive index, the critical angle is the angle above which there is no refracted ray, and it is given by:

(2)
where

is the refractive index of the second medium and

is the refractive index of the first medium.
We can find the ratio

by using Snell's law:

(1)
where

is the angle of incidence

is the angle of refraction
By using the data of the problem and re-arranging (1), we find

and if we use eq.(2) we can now find the value of the critical angle:
Answer:
Plasma
Explanation:
A Coronal Mass Ejection (CME) is an outburst of energy that occurs near the outer part of the sun's atmosphere which causes a production of plasma along with a magnetic field.
The outermost part of the sun's atmosphere is called the Solar Corona Although difficult to see, the corona can be seen during a total solar eclipse.
Plasma from CME are clouds of magnetized electrically charged particles which the solar wind causes to travel at a speed of 1.6 million km/hr.
Answer:
Doing work' is a way of transferring energy from one object to another, energy is transferred when a force moves through a distance.
Explanation: So more energy, more work done bc u transferred more energy to move the object and doing the work. and if you only use a little of energy, the work done also only a little.
The correct answer is the third, It reflects the green light waves and absorbs most of the rest.
Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.