Don’t mind this i just need to answer under something because i just signed up !
Either 175 N or 157 N depending upon how the value of 48° was measured from.
You didn't mention if the angle of 48° is from the lug wrench itself, or if it's from the normal to the lug wrench. So I'll solve for both cases and you'll need to select the desired answer.
Since we need a torque of 55 N·m to loosen the nut and our lug wrench is 0.47 m long, that means that we need 55 N·m / 0.47 m = 117 N of usefully applied force in order to loosen the nut. This figure will be used for both possible angles.
Ideally, the force will have a 0° degree difference from the normal and 100% of the force will be usefully applied. Any value greater than 0° will have the exerted force reduced by the cosine of the angle from the normal. Hence the term "cosine loss".
If the angle of 48° is from the normal to the lug wrench, the usefully applied power will be:
U = F*cos(48)
where
U = Useful force
F = Force applied
So solving for F and calculating gives:
U = F*cos(48)
U/cos(48) = F
117 N/0.669130606 = F
174.8537563 N = F
So 175 Newtons of force is required in this situation.
If the 48° is from the lug wrench itself, that means that the force is 90° - 48° = 42° from the normal. So doing the calculation again (this time from where we started plugging in values) we get
U/cos(42) = F
117/0.743144825 = F
157.4390294 = F
Or 157 Newtons is required for this case.
Answer:
Light's angle of refraction = 37.1° (Approx.)
Explanation:
Given:
Index of refraction = 1.02
Base of refraction = 1
Angle of incidence = 38°
Find:
Light's angle of refraction
Computation:
Using Snell's law;
Sin[Angle of incidence] / Sin[Light's angle of refraction] = Index of refraction / Base of refraction
Sin38 / Light's angle of refraction = 1.02 / 1
Sin[Light's angle of refraction] = Sin 38 / 1.02
Sin[Light's angle of refraction] = [0.6156] / 1.02
Sin[Light's angle of refraction] = 0.6035
Light's angle of refraction = 37.1° (Approx.)
The de Broglie wavelength
m
We know that
de Broglie wavelength =
m
<h3>
What is de Broglie wavelength?</h3>
According to the de Broglie equation, matter can behave like waves, much like how light and radiation do, which are both waves and particles. A beam of electrons can be diffracted just like a beam of light, according to the equation. The de Broglie equation essentially clarifies the notion of matter having a wavelength.
Therefore, whether a particle is tiny or macroscopic, it will have a wavelength when examined.
The wave nature of matter can be seen or observed in the case of macroscopic objects.
To learn more about de Broglie wavelength with the given link
brainly.com/question/17295250
#SPJ4
Answer:
The magnetic field is strongest at the center and weakest between the two poles just outside the bar magnet. The magnetic field lines are densest at the center and least dense between the two poles just outside the bar magnet.
Explanation: