As we know that neutralization reaction is a reaction in which base react with acid to form salt and water.
When Potassium Hydroxide reacts with Sulphuric Acid, it forms Potassium Sulphate and Water.
As a result of neutralization reaction, Potassium Sulphate and Water is formed.
2KOH + H2SO4 ----> K2SO4 + 2H2O
Here, K2SO4 is found in aqueous medium in neutralization reaction. It is a neutral salt.
Extensive properties, as volume and mass, depend on the amount of material. So, you can have a sample of gold and a sample of copper with the same volume as long as you have different amount of each one.
On the other hand, intensive properties do not depend on the amound of material but on the chemical constitution of the material. Density is an intensive property, so gold and copper have different densities. That is why you can use intensive properties to characterize different materials.
The reason why it is not considered this is because the material was made in a lab, not through nature, which is what is required to be considered as a true mineral.
Explanation:
Because when two equal forces are applied from opposite directions, they "eliminate" each other.
The train would go right if a 3N force was only applied in the right direction, and it would go left if the same force was only applied to the left.
If a 3N force was applied to the right and a 2N force to the left, it would equal a 1N force to the right (3-2=1).
But there it's 3-3=0, so in practice the force is 0N. Therefore the train won't move.
Answer:
pH = 6.999
The solution is acidic.
Explanation:
HBr is a strong acid, a very strong one.
In water, this acid is totally dissociated.
HBr + H₂O → H₃O⁺ + Br⁻
We can think pH, as - log 7.75×10⁻¹² but this is 11.1
acid pH can't never be higher than 7.
We apply the charge balance:
[H⁺] = [Br⁻] + [OH⁻]
All the protons come from the bromide and the OH⁻ that come from water.
We can also think [OH⁻] = Kw / [H⁺] so:
[H⁺] = [Br⁻] + Kw / [H⁺]
Now, our unknown is [H⁺]
[H⁺] = 7.75×10⁻¹² + 1×10⁻¹⁴ / [H⁺]
[H⁺] = (7.75×10⁻¹² [H⁺] + 1×10⁻¹⁴) / [H⁺]
This is quadratic equation: [H⁺]² - 7.75×10⁻¹² [H⁺] - 1×10⁻¹⁴
a = 1 ; b = - 7.75×10⁻¹² ; c = -1×10⁻¹⁴
(-b +- √(b² - 4ac) / (2a)
[H⁺] = 1.000038751×10⁻⁷
- log [H⁺] = pH → 6.999
A very strong acid as HBr, in this case, it is so diluted that its pH is almost neutral.