The season that is starting is winter.
The answer to 21 is (4)
It takes so much heat to melt ice or evaporate water because extra energy is required to break the hydrogen bonds between water molecules.
<h3>
Hydrogen bond</h3>
Hydrogen bonding is an electrostatic force of attraction between a hydrogen atom found between a pair of other atoms having a high affinity for electrons.
Hydrogen bonds cause water to be exceptionally attracted to each other creating cohesion.
It takes so much heat to melt ice or evaporate water because extra energy is required to break the hydrogen bonds between water molecules.
Find out more on Hydrogen bond at: brainly.com/question/12798212
Answer:
Option C. Triple the number of moles
Explanation:
From the ideal gas equation:
PV = nRT
Where:
P is the pressure
V is the volume
n is the number of mole
R is the gas constant
T is the absolute temperature.
Making V the subject of the above equation, we have:
PV = nRT
Divide both side by P
V = nRT / P
Thus, we can say that the volume (V) is directly proportional to both the number of mole (n) and absolute temperature (T) and inversely proportional to the pressure (P). This implies that and increase in either the number of mole, the absolute temperature and a decrease in the presence will cause the volume to increase.
Thus, the correct option is option C triple the number of moles. This can further be seen as illustrated below:
Initial volume (V1) = 12 L
Initial mole (n1) = 0.5 mole
Final mole (n2) = triple the initial mole = 3 × 0.5 = 1.5 mole
Final volume (V2) =?
From:
V = nRT / P, keeping T and P constant, we have:
V1/n1 = V2/n2
12/0.5 = V2/1.5
24 = V2/1.5
Cross multiply
V2 = 24 × 1.5
V2 = 36 L.
Thus Option C gives the correct answer to the question.
44g of CO2 can produce by the reaction of carbon with oxygen
Answer:
The first row of elements fits in period <u>6</u>, after the element <u>lanthanum (La)</u>. The second row of elements fits in period <u>7</u>, after the element <u>actinium (Ac). </u>
I hope this helps!