Answer:
Mass has total mechanical energy, which is the sum of kinetic and potential energy. as the mass is dropping, potential energy is converted into kinetic energy so mechanical energy is preserved If there is no friction. If there is friction, some of the mechanical energy is lost as heat energy so it changes.
Explanation:
Answer:
1170 m
Explanation:
Given:
a = 3.30 m/s²
v₀ = 0 m/s
v = 88.0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(88.0 m/s)² = (0 m/s)² + 2 (3.30 m/s²) (x - 0 m)
x = 1173.33 m
Rounded to 3 sig-figs, the runway must be at least 1170 meters long.
Σf = m a
Σf = m v^2 / r
Σf = 52 8^2 / 1.6
Σf = 2080 N
Answer:
Net force on the block is 32 N.
Acceleration of the object is 6.4 m/s².
Explanation:
Let the acceleration of the object be
m/s².
Given:
Mass of the block is, 
Force of pull is, 
Frictional force on the block is, 
The free body diagram of the object is shown below.
From the figure, the net force in the forward direction is given as:

Now, from Newton's second law of motion, net force is equal to the product of mass and acceleration. So,

Therefore, the acceleration of the object in the forward direction is 6.4 m/s².
I believe the answer is 153.8 m.