Answer:
The internet is most useful to them because they use it to communicate.
Explanation:
If I were to send a message to my brother in Florida, through the internet, while I'm in Pennsylvania he would get it in minutes. On the other hand if I were going to meet him and then explain what I wanted to tell him in person it would take a much longer time.
Answer
given,
v = 128 ft/s
angle made with horizontal = 30°
now,
horizontal component of velocity
vx = v cos θ = 128 x cos 30° = 110.85 ft/s
vertical component of velocity
vy = v sin θ = 128 x sin 30° = 64 m/s
time taken to strike the ground
using equation of motion
v = u + at
0 =-64 -32 x t
t = 2 s
total time of flight is equal to
T = 2 t = 2 x 2 = 4 s
b) maximum height
using equation of motion
v² = u² + 2 a h
0 = 64² - 2 x 32 x h
64 h = 64²
h = 64 ft
c) range
R = v_x × time of flight
R = 110.85 × 4
R = 443.4 ft
Answer:
Magnitude of the net force on q₁-
Fn₁=1403 N
Magnitude of the net force on q₂+
Fn₂= 810 N
Magnitude of the net force on q₃+
Fn₃= 810 N
Explanation:
Look at the attached graphic:
The charges of the same sign exert forces of repulsion and the charges of opposite sign exert forces of attraction.
Each of the charges experiences 2 forces and these forces are equal and we calculate them with Coulomb's law:
F= (k*q*q)/(d)²
F= (9*10⁹*3*10⁻⁶*3*10⁻⁶)(0.01)² =810N
Magnitude of the net force on q₁-
Fn₁x= 0
Fn₁y= 2*F*sin60 = 2*810*sin60° = 1403 N
Fn₁=1403 N
Magnitude of the net force on q₃+
Fn₃x= 810- 810 cos 60° = 405 N
Fn₃y= 810*sin 60° = 701.5 N

Fn₃ = 810 N
Magnitude of the net force on q₂+
Fn₂ = Fn₃ = 810 N
Answer
1.0/5
4
IlaMends
Ambitious
2.1K answers
12.9M people helped
Explanation:
When pH of the solution is 11.
..(1)
At pH = 11, the concentration of ions is .
When the pH of the solution is 6.
..(2)
At pH = 6, the concentration of ions is .
On dividing (1) by (2).
The ratio of hydrogen ions in solution of pH equal to 11 to the solution of pH equal to 6 is .
Difference between the ions at both pH:
This means that Hydrogen ions in a solution at pH = 7 has ions fewer than in a solution at a pH = 6