Answer:
jfjcgufnfhfufm TV fifnricnrhkddufnfif km fgkfkvntfmrugrhfifnh r
Treatment water from the plant would affects the communities present in the downstream of the river.
Answer: Option (a)
<u>Explanation:</u>
Wastewater treatment plant is a process used to treat the water that flows from the rivers, streams, and lakes.This plant removes the dust, sand, sediments present in the river water.
When this treated water is released into the downriver stream, it affects the health of aquatic organisms present in that stream.Use of chemicals in treating the wastewater may cause genetic problems to the communities present in that region.
It also causes air pollution and more energy is needed for the treatment process and thus affects the ecosystem.
Answer:
Option B:
A child sitting on a swing.
Explanation:
When we hear the word oscillator, a good example is the pendulum bob of a grandfather clock. We can picture the motion to get a perfect understanding of its path of motion and relate it to other systems of motion in our everyday life.
An oscillator is a system that moves in such a way that it reverses its direction after a period of time. It can be seen as a "to-and-fro" motion.
From the options, a child sitting on a swing is the perfect example of an oscillating system because the child will be moving forwards and backwards, alternately reversing the direction of motion with time.
Answer: Here is the complete question:
A small 12.00g plastic ball is suspended by a string in a uniform, horizontal electric field with a magnitude of 103 N/C. If the ball is in equilibrium when the string makes a 30 angle with the vertical, what is the net charge on the ball?
Answer: The charge on the ball is 5.71 × 10^-4 C
Explanation:
Please see the attachments below
Answer:
option a.
Explanation:
We can think of an atom as a nucleus (where the protons and neutrons are) and some electrons orbiting it.
We also know that the mass of an electron is a lot smaller than the mass of a proton or the mass of an electron.
So, if all the protons and electrons of an atom are in the nucleus, we know that most of the mass of an atom is in the nucleus of that atom.
Then we define the mass number, which is the total number of protons and neutrons in an atom. Such that the mass of a proton (or a neutron) is almost equal to 1u
Then if we define A as the total number of protons and neutrons, and each one of these weights about 1u
(where u = atomic mass unit)
Then the weight of the nucleus is about A times 1u, or:
A*1u = A atomic mass units.
Then the correct option is:
The mass of the nucleus is approximately EQUAL to the mass number multiplied by __1__ Atomic Mass unit.
option a.