The emerging velocity of the bullet is <u>71 m/s.</u>
The bullet of mass <em>m</em> moving with a velocity <em>u</em> has kinetic energy. When it pierces the block of wood, the block exerts a force of friction on the bullet. As the bullet passes through the block, work is done against the resistive forces exerted on the bullet by the block. This results in the reduction of the bullet's kinetic energy. The bullet has a speed <em>v</em> when it emerges from the block.
If the block exerts a resistive force <em>F</em> on the bullet and the thickness of the block is <em>x</em> then, the work done by the resistive force is given by,

This is equal to the change in the bullet's kinetic energy.

If the thickness of the block is reduced by one-half, the bullet emerges out with a velocity v<em>₁.</em>
Assuming the same resistive forces to act on the bullet,

Divide equation (2) by equation (1) and simplify for v<em>₁.</em>

Thus the speed of the bullet is 71 m/s
Answer:
dV/dt = 9 cubic inches per second
Explanation:
Let the height of the cylinder is h
Diameter of cylinder = height of the cylinder = h
Radius of cylinder, r = h/2
dh/dt = 3 inches /s
Volume of cylinder is given by

put r = h/2 so,

Differentiate both sides with respect to t.

Substitute the values, h = 2 inches, dh/dt = 3 inches / s

dV/dt = 9 cubic inches per second
Thus, the volume of cylinder increases by the rate of 9 cubic inches per second.
Answer:
First one, third one, and fourth one
The wrong type of lens-Microscope, concave
Explanation:
A microscope Basically uses t<u>wo convex lenses to magnify an object, or specimen.</u>
There are 2 lenses in a microscope
- <u>Object Lens:</u>The lens that is closer to the object
- <u>Eyepiece:</u>The lens that is closer to the eye
Both the object lens and the eyepiece, is a convex lens.
Answer:
When a dying star has a mass which is 1.4 to 3 times that of the sun, it will form a neutron star. Stars with a mass greater than thrice the sun's mass, black hole is formed.
Explanation: