1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snowcat [4.5K]
3 years ago
10

A flat (unbanked) curve on a highway has a radius of 240.0 m m . A car rounds the curve at a speed of 26.0 m/s m/s . Part A What

is the minimum coefficient of friction that will prevent sliding? μ min μmin = nothing SubmitRequest Answer Part B Suppose the highway is icy and the coefficient of friction between the tires and pavement is only one-third what you found in part A. What should be the maximum speed of the car so it can round the curve safely?

Physics
1 answer:
Grace [21]3 years ago
8 0

Answer:

a) u_s=0.375

b )v=14.4 m/s

Explanation:

1 Concepts and Principles

Particle in Equilibrium: If a particle maintains a constant velocity (so that a = 0), which could include a velocity of zero, the forces on the particle balance and Newton's second law reduces to:  

∑F=0                 (1)

2- Particle in Uniform Circular Motion:

If a particle moves in a circle or a circular arc of radius Rat constant speed v, the particle is said to be in uniform circular motion. It then experiences a net centripetal force F and a centripetal acceleration a_c. The magnitude of this force is:

F=ma_c

 =m*v^2/R            (2)

where m is the mass of the particle F and a_c are directed toward the center of curvature of the particle's path.  

<em>3- The magnitude of the static frictional force between a static object and a surface is given by:</em>  

f_s=u_s*n              (3)

where u_s is the coefficient of kinetic friction between the object and the surface and n is the magnitude of the normal force.  

Given Data

R (radius of the car's path) = 170 m

v (speed of the car) = 25 m/s  

Required Data

- In part (a), we are asked to find the coefficient of static friction u_s that will prevent the car from sliding.  

- In part (b), we are asked to find the speed of the car v if the coefficient of static friction is one-third u_s found in part (a).  

Solution:

see the attachment pic

Since the car is not accelerating vertically, we can model it as a particle in equilibrium in the vertical direction and apply Equation (1)

∑F_y=n-mg

       = mg               (4)  

We model the car as a particle in uniform circular motion in the horizontal direction. The force that enables the car to remain in its circular path is the force of static friction at the point of contact between road and tires. Apply Equation (2) to the horizontal direction:

∑F_x=f_s

       =m*v^2/R

Substitute for f_s from Equation (3):  

u_s=m*v^2/R

Substitute for n from Equation (4):  

u_s*mg=m*v^2/R

  u_s*g = v^2/R

Solve for u_s:

u_s=  v^2/Rg                          (5)

Substitute numerical values:  

u_s=0.375

(b)  

The new coefficient of static friction between the tires and the pavement is:

u_s'=u_s/3

Substitute u_s/3 for u_s in Equation (5):

u_s/3=v^2/Rg  

Solve for v:  

v=14.4 m/s

You might be interested in
Two planets P1 and P2 orbit around a star S in circular orbits with speeds v1 = 40.2 km/s, and v2 = 56.0 km/s respectively. If t
Readme [11.4K]

Answer: 3.66(10)^{33}kg

Explanation:

We are told both planets describe a circular orbit around the star S. So, let's approach this problem begining with the angular velocity \omega of the planet P1 with a period T=750years=2.36(10)^{10}s:

\omega=\frac{2\pi}{T}=\frac{V_{1}}{R} (1)

Where:

V_{1}=40.2km/s=40200m/s is the velocity of planet P1

R is the radius of the orbit of planet P1

Finding R:

R=\frac{V_{1}}{2\pi}T (2)

R=\frac{40200m/s}{2\pi}2.36(10)^{10}s (3)

R=1.5132(10)^{14}m (4)

On the other hand, we know the gravitational force F between the star S with mass M and the planet P1 with mass m is:

F=G\frac{Mm}{R^{2}} (5)

Where G is the Gravitational Constant and its value is 6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}

In addition, the centripetal force F_{c} exerted on the planet is:

F_{c}=\frac{m{V_{1}}^{2}}{R^{2}} (6)

Assuming this system is in equilibrium:

F=F_{c} (7)

Substituting (5) and (6) in (7):

G\frac{Mm}{R^{2}}=\frac{m{V_{1}}^{2}}{R^{2}} (8)

Finding M:

M=\frac{V^{2}R}{G} (9)

M=\frac{(40200m/s)^{2}(1.5132(10)^{14}m)}{6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}} (10)

Finally:

M=3.66(10)^{33}kg (11) This is the mass of the star S

4 0
4 years ago
What do you mean by kinetic energy and potential energy ?
Verizon [17]

  • Kinetic Energy of an object is the measure of the work an object can do by virtue of its motions..

  • Formula - KE = 1/2 mv^2

  • Where KE is the kinetic energy, m is the body’s mass, and v is the body’s velocity.

  • Potential energy is the stored energy in any object or system by virtue of its position or arrangement of parts..

  • Formula - W = mgh

Where,

. m is the mass in kilograms

. g is the acceleration due to gravity

. h is the height in meters

Hope it helpz~ uh..

4 0
2 years ago
Potential energy is best described as the
vitfil [10]
Energy stored by an object based on position.
3 0
3 years ago
A free electron is moving with a velocity of 3 × 105 m/s. It strikes a stationary electron in a head-on elastic collision. The m
Gelneren [198K]

Answer:

After the colision, the stationary electron's momentum is given as:

P = 2.7328 x 10^(-25) kg m/s

The direction of momentum is the same as the direction of velocity of the electron.

Explanation:

In an Isolated system, when an object moving at some velocity v collides head on with a stationary object of equal mass. There velocities are exchanged.

This means that the first electron will become stationary and the electron which was stationary initially will start moving at a velocity of 3*10^(5)m/s in the same direction as the first electron.

Post collision momentum of the stationary electron:

V = 3 x 10^5 m/s

m = 9.1093 x 10^(-31) kg

Momentum = P = mV =  9.1093 x 10^(-31) x 3 x 10^5

P = 2.7328 x 10^(-25) kg m/s

The direction of momentum is the same as the velocity of the electron.

7 0
4 years ago
Read 2 more answers
What is the source of energy in the food chain​
Aleksandr [31]

Answer:

The first source of energy in a food chain is producer.

Explanation: In the food chain, the producer will be a plant that a primary consumer, a herbivore eats. The herbivore gets eaten by a secondary consumer, carnivorous. When the carnivore dies, it becomes energy for a decomposer.

5 0
3 years ago
Other questions:
  • Two billiard balls of equal mass move at right angles and meet at the origin of an xy coordinate system. Initially ball A is mov
    15·1 answer
  • A small 0.13 kg metal ball is tied to a very light (essentially massless) string that is 0.70 m long. The string is attached to
    13·1 answer
  • Find the radius R of the orbit of a geosynchronous satellite that circles the Earth. (Note that R is measured from the center of
    10·1 answer
  • A hot air balloon must be designed to support a basket, cords, and one person for a total payload weight of 1300 N plus the addi
    9·1 answer
  • An electric dipole is formed from two charges, , spaced 1.0 cm apart. The dipole is at the origin, oriented along the y-axis. Th
    14·2 answers
  • 6. Decelerating a plane at a uniform rate of -8 m/s2, a pilot stops the plane in 484 m. How
    6·1 answer
  • What is the speed of sound in air with a temperature of 25 degrees C​
    8·1 answer
  • Mr. Arnold's 5th grade science class did an experiment to see if mold would grow better on moist bread or on dry bread. Each lab
    8·1 answer
  • A boat has a mass of 4900 kg. Its engines generate a drive force of 4600 N due west, while the wind exerts a force of 670 N due
    5·1 answer
  • Tectonic processes are fueled by heat from __________, while atmospheric convection is fueled by heat from ___________.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!