The thermal energy keeps these two changing their temperature over time.
The surrounding temperature (environment) clearly effects the cold water AND the boiling water.
Eventually, both would reach an equilibrium in temperature. <span />
Refer to the diagram shown below.
The initial KE (kinetic energy) of the system is
KE₁ = (1/2)mu²
After an inelastic collision, the two masses stick together.
Conservation of momentum requires that
m*u = 2m*v
Therefore
v = u/2
The final KE is
KE₂ = (1/2)(2m)v²
= m(u/2)²
= (1/4)mu²
= (1/2) KE₁
The loss in KE is
KE₁ - KE₂ = (1/2) KE₁.
Conservation of energy requires that the loss in KE be accounted for as thermal energy.
Answer: 1/2
Answer:
B. From positions A and D.
Explanation:
<u>Types Of Energy Transfers</u>
Heat can be transferred in three ways: by conduction, convection, and by radiation.
- Conduction is the transfer of energy from one molecule to another by direct contact.
- Convection is the movement of heat by a fluid such as water or air.
- Radiation is the transfer of heat by electromagnetic waves.
Answer:
Internal resistance refers to the opposition to the flow of current offered by the cells and batteries themselves resulting in the generation of heat. Internal resistance is measured in Ohms. ... Example: 1 The potential difference across the cell when no current flows through the circuit is 3 V.
Thank you hope it is helpful to you if it is helpful then plz mark me as the brainlist
For this case we can write each one of the vectors in the following way:

This means that the x-axis is defined as positive towards the west.
Then, the resulting vector is:

Answer:
Displacement vectors of 10 m west and 14 m west make a resultant vector that is 24 m west