Answer;
It's about acceleration, right?
Answer:
a) k = 2231.40 N/m
b) v = 0.491 m/s
Explanation:
Let k be the spring force constant , x be the compression displacement of the spring and v be the speed of the box.
when the box encounters the spring, all the energy of the box is kinetic energy:
the energy relationship between the box and the spring is given by:
1/2(m)×(v^2) = 1/2(k)×(x^2)
(m)×(v^2) = (k)×(x^2)
a) (m)×(v^2) = (k)×(x^2)
k = [(m)×(v^2)]/(x^2)
k = [(3)×((1.8)^2)]/((6.6×10^-2)^2)
k = 2231.40 N/m
Therefore, the force spring constant is 2231.40 N/m
b) (m)×(v^2) = (k)×(x^2)
v^2 = [(k)(x^2)]/m
v = \sqrt{ [(k)(x^2)]/m}
v = \sqrt{ [(2231.40)((1.8×10^-2)^2)]/(3)}
= 0.491 m/s
you will hear a higher pitch due to a higher frequency.
Answer:
D. An image that is smaller than the object and is behind the mirror
Answer:
d) v1 = v2 = v3
Explanation:
This can be answered using conservation of energy. We calculate the mechanical energy E=K+U (sum of kinetic and gravitational potential energies) at the original and final points, and impose they are equal.
At the original point we have, for the three balls:

At the final point we have, for the three balls:

Since we have
, and
is the same for all balls, then
is the same for all balls, which means that
, the final velocity, is the same for all balls.