Answer:
4. total energy
Explanation:
According to Bernoulli's principle at any two points along a streamline flow The total energy that is sum of pressure energy , Kinetic energy and potential energy of the liquid all taken in per unit volume remains constant. Therefore,
for ideal fluid flows through a pipe of variable cross section without any friction. The fluid completely fills the pipe. At any given point in the pipe, the fluid has a constant Total Energy.
If the potential energy of the three-object system is to be a maximum (closest to zero), should object 3 be placed closer to object 1, closer to object 2, or halfway between them?
If the potential energy of the three-object system is to be a maximum (closest to zero), should object 3 be placed closer to object 1, closer to object 2, or halfway between them?
Object 3 should be placed closer to object 1.
Object 3 should be placed on a halfway between object 2 and object 1.
Object 3 should be placed closer to object 2.
Solution
I think that Object 3 should be placed closer to object 2.
Answer:
The speed of the cyclist is 2.75 km/min.
Explanation:
Given
To determine
We need to find the speed of a cyclist.
In order to determine the speed of a cyclist, all we need to do is to divide the distance covered by a cyclist by the time taken to cover the distance.
Using the formula involving speed, time, and distance

where
substitute d = 88, and t = 32 in the formula


Cancel the common factor 8

km/min
Therefore, the speed of the cyclist is 2.75 km/min.
Give that,
The frequency range the dog can hear is 15Hz to 50,000Hz
The wavelength of sound in air at 20°C =?
Speed of sound is 344
The frequency corresponding to the lower cut-off point is the lowest frequency which his 15Hz
F=15Hz
The relationship between the wavelength, speed and frequency is given as
v=fλ
Then,
λ=v/f
λ=v/f
λ=344/15
λ=22.93m