We all struggle in some subjects, you do badly when you don't try, and sometimes we try and can't get the answer, I'll help with that. :)
The first answer is CO2(g), CO2 is a gas, and all gas have... 4) No definite shape, no definite volume.
A piece of ice, a block of wood, and a ceramic cup are solids. They have shapes that do not change and volumes that can be measured. Any matter that is a solid has a definite shape and a definite volume.
A liquid takes the shape of what holds it, besides a flat surface, which will just evidently, take the shape of a flat surface. A liquid has a definite volume, because the volume of a liquid is constant because forces of attraction keep the particles loosely together.
Gases attempt to fill a container of any shape or size. Therefore, it has no definite shape.
There are forces of attraction among the particles in all matter, therefore, it has no definite volume.
The second question might become easier with the explanation above. A liquid has a definite volume because the forces of attraction are loosely together! Therefore, it has a definite volume, but it will take the shape of it's container.
This means... Yes! 2) It retains its original volume but changes shape.
This one is easy. To convert one gram of a solid at its normal heating point to a liquid at the same temperature, is the 1) Heat of Vaporization.
Heat of Vaporization is the amount of heat energy required to convert one gram of a substance from a liquid to a gas.
The third question, the molecules for H20, in a solid phase are always in an geometric and arranged pattern.
Most solids are arranged in geometric and arranged patterns, and since H20 is not in its indefinitely shaped liquid phase, it has a definite shape and thus, retains a repeating (geometric) pattern.
(Note- Some solids like wax or rubber do not have an arranged or geometric pattern.)
The “average of a kinetic energy” is defined as the vitality of movement of particles of a framework.
Or in simpler terms, “energy motion”.
So when temperature increases, the average kinetic energy of a molecule(s) 1) increases.
They burn up and cause it to look like shooting stars
Answer : The specific heat (J/g-K) of this substance is, 0.780 J/g.K
Explanation :
Molar heat capacity : It is defined as the amount of heat absorbed by one mole of a substance to raise its temperature by one degree Celsius.
1 mole of substance releases heat = 92.1 J/K
As we are given, molar mass of unknown substance is, 118 g/mol that means, the mass of 1 mole of substance is, 118 g.
As, 118 g of substance releases heat = 92.1 J/K
So, 1 g of substance releases heat = 
Thus, the specific heat (J/g-K) of this substance is, 0.780 J/g.K
Answer:
B
Explanation:
The normal way to express an energy reaction is to put the energy on the left. Then you can make a rule.
- If the energy on the left is plus then the reactants require energy. The reaction is endothermic -- energy is taken from the environment.
- If the energy is minus when it is on the left. then the reactants give up energy. The reaction is exothermic and energy is given to the environment.
2CO(g)+O2(g) - energy --> 2CO2(g)
Exothermic
The dye molecules move in a directed way from high to low concentration
Explanation:
The statement that best describes the motion of dye molecule in water is directed from a region of high to low concentration. The motion of the particles of the dye in water is described as diffusion:
- diffusion is the movement of molecules of a substance from one position to another.
- diffusion occurs from a region of high concentration to that of a low concentration.
- the dye in the water solution causes an increase in concentration of an area where it is dropped.
- this causes the particles to spread outward in the solution.
- a concentration gradient is set up between the two parts of the solution.
- this gradient facilitates the movement of the dye particles.
Learn more:
diffusion brainly.com/question/6873289
#learnwithBrainly