The problem is incomplete. However, there can only be two probable questions for this problem. First, you can be asked the individual partial pressures of each gas. Second, you can be asked the volume occupied by each gas. I can answer both cases for you.
1.
Let's assume ideal gas.
Pressure for N₂: 2 bar*0.4 = 0.8 bar
Pressure for CO₂: 2 bar*0.5 = 1 bar
Pressure for CH₄: 2 bar*0.1 = 0.2 bar
2. For the volume, let's find the total volume first.
V = nRT/P = (1 mol)(8.314 J/mol-K)(30 +273 K)/(2 bar*10⁵ Pa/1 bar)
V = 0.0126 m³
Hence,
Volume for N₂: 0.0126 bar*0.4 = 0.00504 m³
Volume for CO₂: 0.0126*0.5 = 0.0063 m³
Volume for CH₄: 0.0126*0.1 = 0.00126 m³
Answer:
..........................
Explanation:
........................
Answer:
When the Earth rotates on its axis, it prevents air currents from going in a straight line to the north and the south from the equator. It results in one of the effects of rotation of the Earth: the Coriolis Effect.
Answer:
A covalent chemical bond is one in which <u>outer-shell electrons of two atoms are shared so as to satisfactorily fill their respective orbitals</u>.
Explanation:
Covalent bonds are formed between two atoms having their electronegativity difference less than 1.7. In this type of bonding the valence electrons of one atoms forms molecular bond with the valence electrons of another atom. The electrons are mutually shared.
Covalent bond can be non-polar as for example formed between hydrogen and carbon atoms.
Also, covalent bond can be polar in nature as that formed between hydrogen and chlorine atoms because the chlorine atom is more electronegative and hence attracts the electrons more towards itself making density of electrons less on hydrogen atom.
Sir Joseph John Thomson OM PRS (18 December 1856 – 30 August 1940) was a British physicist and Nobel Laureate in Physics, credited with the discovery of the electron, the first subatomic particle to be discovered.