Answer:
Magnet with a positive and a negative pole
Explanation:
A great analogy to demonstrate what a polar molecule looks like is to imagine a magnet. A magnet has one positively charged end and one negatively charged end, two poles, that is.
Imagine that we have a magnet of a shape of a prism (water molecule has a bent shape). The two base vertices of the face of the triangle are positively charged, that's because hydrogen is less electronegative than oxygen and, hence, the two hydrogen atoms are partially positively charged in a water molecule.
Oxygen is more electronegative than hydrogen meaning it has a greater electron-withdrawing force, so electrons are closer to oxygen within the O-H bonds. Oxygen, as a result, becomes partially negatively charged, so it's our negative pole of the magnet.
Answer:
(S)-3-methoxy-3-methylbutan-2-ol
Explanation:
In this case, we have an <u>epoxide opening in acid medium</u>. The first step then is the <u>protonation of the oxygen</u>. Then the epoxide is broken to generate the most <u>stable carbocation</u>. The nucleophile () will attack the carbocation generating a new bond. Finally, the oxygen is <u>deprotonated</u> to obtain an ether functional group and we will obtain the molecule <u>(S)-3-methoxy-3-methylbutan-2-ol</u>.
See figure 1
I hope it helps!
Answer:
Correct answer is A.
Explanation:
Frequency is the number of oscillations that a wave have per unit time. Since time is measured in seconds, the wave with the highest frequency must register the highest number of oscillation per second. Hence, correct answer is A.
3.37 x 10¹⁰ molecules
Explanation:
Given parameters:
Volume of water = 1pL = 1 x 10⁻¹²L
Density of water = 1.00g/mL = 1000g/L
Unknown:
Number of water molecules = ?
Solution:
To solve this problem, we first find the mass of the water molecule in the inkjet.
Mass of water = density of water x volume of water
Then, the number of molecules can be determined using the expression below:
number of moles =
Number of molecules = number of moles x 6.02 x 10²³
Solving:
Mass of water = 1 x 10⁻¹² x 1000 = 1 x 10⁻⁹g
Number of moles:
Molar mass of H₂O = 2 + 16 = 18g/mol
Number of moles = = 5.6 x 10⁻¹⁴moles
Number of molecules = 5.6 x 10⁻¹⁴ x 6.02 x 10²³ = 33.7 x 10⁹
= 3.37 x 10¹⁰ molecules
Learn more:
Number of molecules brainly.com/question/4597791
#learnwithBrainly