Answer:
10−8 M.
Explanation:
In this problem we are given pH and asked to solve for the hydrogen ion concentration. Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH,
by exponentiating both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × In this problem we are given pH and asked to solve for the hydrogen ion concentration. Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH,
by exponentiating both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × 10−8 M.
It’s charge was neutral due to the equal number of protons and electrons. when it becomes an ion it loses 3 electrons leaving behind only 10. the answer is 10. the equation is +13 +(-10)=+3
Answer:
True
Explanation:
Dispensing chemical from large stock bottles into smaller container makes sure that students only takes the quantity they need which reduces wastage. Also in situation where the students did not finish the reagent or chemical it is easier for student to pour back into smaller bottle than the entire reagent bottle which can contaminate the whole solution. Small bottles prevent or reduces the risk of spillage because it is easier to handle and pour.