<span>The calculation of quantities in chemical equations are called Stoichiometry. Stoichiometry is a branch of chemistry which deals with relative quantities of reactants and products in chemical reactions. The correct answer is 'Stoichoimetry'. I hope this helps you. </span>
367.2 g of silver
Explanation:
To find the mass of a substance knowing the number of moles we use the following formula:
number of mole = mass / molecular weight
In the case of silver we use the atomic weight of 108 g/mole.
mass = number of moles × molecular weight
mass of silver = 3.4 moles × 108 g/mole
mass of silver = 367.2 g
Learn more about:
moles
brainly.com/question/2293005
#learnwithBrainly
Answer:
It represents the <em>number of atoms</em> of that particular element present in the compound. In C₂H₄O₂ there are 2 Carbon atoms, 4 Hydrogen atoms and 2 Oxygen atoms.
Answer:
E. All of the above are true.
Explanation:
<em>Which of the following statements is TRUE?</em>
<em>A. State functions do not depend on the path taken to arrive at a particular state.</em> TRUE. State functions like enthalpy (ΔH) and internal energy (ΔE) do not depend on the trajectory, but on the initial and final state.
<em>B. Energy is neither created nor destroyed, excluding nuclear reactions.</em> TRUE. Only in nuclear reactions can energy (E) can be transformed in matter (m) and vice-versa according to Einstein equation: E = m . c² (c is the speed of light).
<em>C. ΔHrx can be determined using constant pressure calorimetry.</em> TRUE. The enthalpy of reaction is the heat involved at constant pressure.
<em>D. ΔErx can be determined using constant volume calorimetry.</em> TRUE. The internal energy of reaction is the heat involved at constant volume.
Answer:
0.3229 M HBr(aq)
0.08436M H₂SO₄(aq)
Explanation:
<em>Stu Dent has finished his titration, and he comes to you for help with the calculations. He tells you that 20.00 mL of unknown concentration HBr(aq) required 18.45 mL of 0.3500 M NaOH(aq) to neutralize it, to the point where thymol blue indicator changed from pale yellow to very pale blue. Calculate the concentration (molarity) of Stu's HBr(aq) sample.</em>
<em />
Let's consider the balanced equation for the reaction between HBr(aq) and NaOH(aq).
NaOH(aq) + HBr(aq) ⇄ NaBr(aq) + H₂O(l)
When the neutralization is complete, all the HBr present reacts with NaOH in a 1:1 molar ratio.

<em>Kemmi Major also does a titration. She measures 25.00 mL of unknown concentration H₂SO₄(aq) and titrates it with 0.1000 M NaOH(aq). When she has added 42.18 mL of the base, her phenolphthalein indicator turns light pink. What is the concentration (molarity) of Kemmi's H₂SO₄(aq) sample?</em>
<em />
Let's consider the balanced equation for the reaction between H₂SO₄(aq) and NaOH(aq).
2 NaOH(aq) + H₂SO₄(aq) ⇄ Na₂SO₄(aq) + 2 H₂O(l)
When the neutralization is complete, all the H₂SO₄ present reacts with NaOH in a 1:2 molar ratio.
