Answer:
When sugar is dissolved in water, the solution does not conduct electricity, because there are no ions in the solution. Some substances that are made of molecules form solutions that do conduct electricity. Ammonia is such a substance.
The mass of the solid product of the reaction is determined by weighing.
a) The total pressure of the system is 1.79 atm
b) The mole fraction and partial pressure of hydrogen is 0.89 and 1.59 atm respectively
c) The mole fraction and the partial pressure of argon is 0.11 and 0.19 atm.
<h3>What is the total pressure?</h3>
We know tat we can be able to obtain the total pressure in the system by the use of the ideal gas equation. We would have from the equation;
PV = nRT
P = pressure
V = volume
n = Number of moles
R = gas constant
T = temperature
Number of moles of hydrogen = 14.2 g/2g = 7.1 moles
Number of moles of Argon = 36.7 g/40 g/mol
= 0.92 moles
Total number of moles = 7.1 moles + 0.92 moles = 8.02 moles
Then;
P = nRT/V
P = 8.02 * 0.082 * 273/100
P = 1.79 atm
Mole fraction of hydrogen = 7.1/8.02 = 0.89
Partial pressure of hydrogen = 0.89 * 1.79 atm
= 1.59 atm
Mole fraction of argon = 0.92 / 8.02
= 0.11
Partial pressure of argon = 0.11 * 1.79 atm
= 0.19 atm
Learn more about partial pressure:brainly.com/question/13199169
#SPJ1
Bronsted - Lowry acid in the given reaction is NH₄, as it gives H⁺ ion.
<h3>What is Bronsted - Lowry acid?</h3>
According to the theory of Bronsted - Lowry, acids are those substances which gives H⁺ ion or proton in the aqueous medium.
Given chemical reaction is :
NH₄ + HPO₄²⁻ → NH₃ + H₂PO₄⁻
In the above reaction NH₄ is the Bronsted - Lowry acid as it gives H⁺ ion in the reaction and changes to NH₃ which is the conjugate base of NH₄. Whereas HPO₄²⁻ is the Bronsted - Lowry base as it accepts the H⁺ ion to form H₂PO₄⁻ which is the conjugate acid of it.
Hence, option (1) is correct, i.e. NH₄ is the Bronsted - Lowry acid.
To know more about Bronsted - Lowry acid, visit the below link:
brainly.com/question/1435076