The answer is <span>A. Speed=100 million m/s and frequency = 50 million Hz.</span>
Let's calculate for each choice the wavelength using the equation:
v = f × λ ⇒ λ = v ÷ f<span>
where:
v - the speed,
f - the frequency,
</span>λ - the wavelength.
A:
v = 100 000 000 m/s
f = 50 000 000 Hz = 50 000 000 1/s (Since f = 1/T, so units are Hz = 1/s)
⇒ λ = 100 000 000 ÷ 50 000 000 = 2 m
B:
v = 150 000 000 m/s
f = 1 500 Hz = 1 500 1/s
⇒ λ = 150 000 000 m/s ÷ 1 500 = 100 000 m
B:
v = 300 000 000 m/s
f = 100 Hz = 100 1/s
⇒ λ = 300 000 000 m/s ÷ 100 = 3 000 000 m
According to these calculations, the shortest wavelength is needed for choice A.
Its 21!! sorry i was late! :)
Answer:
Vy = 80.5 [m/s]
Explanation:
In order to solve this problem we must use the Pythagorean theorem.
V = 90 [m/s]
The components are Vx and Vy:
Therefore:

where:
Vy = 2*Vx ; because one is twice of the other.
![90 = \sqrt{v_{x}^{2} +(2*v_{x})^{2} }\\ 90 =\sqrt{v_{x}^{2}+4*v_{x}^{2}} \\90 =\sqrt{5v_{x}^{2}} \\90=2.23*v_{x} \\v_{x}=40.25[m/s]](https://tex.z-dn.net/?f=90%20%3D%20%5Csqrt%7Bv_%7Bx%7D%5E%7B2%7D%20%20%2B%282%2Av_%7Bx%7D%29%5E%7B2%7D%20%7D%5C%5C%2090%20%3D%5Csqrt%7Bv_%7Bx%7D%5E%7B2%7D%2B4%2Av_%7Bx%7D%5E%7B2%7D%7D%20%5C%5C90%20%3D%5Csqrt%7B5v_%7Bx%7D%5E%7B2%7D%7D%20%5C%5C90%3D2.23%2Av_%7Bx%7D%20%5C%5Cv_%7Bx%7D%3D40.25%5Bm%2Fs%5D)
and the bigger vector is:
Vy = 40.25*2
Vy = 80.5 [m/s]
Answer: 574.59 K
Hope this helps you out (◠‿◕)
Explanation:
Given that,
Mass of the car, m = 710 kg
Speed of the car, v = 23 m/s
Drag force, F = 500 N
(a) Let P is the power is required from the car's engine to drive the car on the level ground. Power is given by :

(b) Let P is the power is required from the car's engine to drive the car on up a hill with a slope of 2 degrees.
At this slope, force will be, 
Total force will be :

Power is given by :

or
P = 17 kW