Complete Question
The complete question is shown on the first uploaded image
Answer:
The electric field at that point is
Explanation:
From the question we are told that
The radius of the inner circle is 
The radius of the outer circle is 
The charge on the spherical shell
The magnitude of the point charge at the center is 
The position we are considering is x = 0.60 m from the center
Generally the electric field at the distance x = 0.60 m from the center is mathematically represented as

substituting values

where k is the coulomb constant with value 
substituting values


When a footballer collides with the goal post, the forces at work are the action and reaction forces. The player will exert an action force on the goal post, and then a reaction force from the goal post will stop the player. The reaction force call will cause pain and even injury to the player.
Answer:
it would be 3
Explanation:
because you have to divide the length by the height of the incline.
<span>In Ionic type of bonding, electrons are lost (more
protons than electrons and positive charge) or gained (more electrons than
protons, still a negative charge) by atoms, and the atoms are held together by
electrical attraction in the process. Covalent bondings are the sharing of electrons
as well as partial bondings. Covalent bondings’ electrons have the same charges
thus, there is no gaining or losing electrons in the process of sharing. Strong
bondings are applicable only to Hydrogen (H) atoms. </span>
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.