It’s definitely D: seeing all the options available to you and giving one a try
Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec
Answer: THE ANSWER IS C!
The total energy of a system can decrease only if energy leaves the system.
Explanation: Apex!
Answer:
Emissions from power plants that burn fossil fuels increase atmospheric carbon dioxide, which is absorbed by the ocean.
Explanation:
Fossil fuels are burnt in power plants in order to produce energy. These fossil fuels contain carbon. Combustion of these fossil fuels emits oxides of carbon into the atmosphere. The oxides of carbon are carbon II oxide and carbon dioxide.
Carbon dioxide can be absorbed by the ocean to form carbonic acid according to the reaction equation;
CO2(aq) + H2O(l) ------> H2CO3(aq)
This is an anthropogenic activity which increases ocean acidification.
Explanation:
The height of the rise of liquid with capillary tube is given by the formula as follows :

Where
r is radius
It is clear that the height of the rise of liquid is inversely proportional to the radius of the capillary tube.
If the radius of the capillary tube is doubled, it means the height of rise of liquid with capillary tube become half.