The nervous system is a complex collection of nerves and specialized cells known as neurons that transmit signals between different parts of the body.
The somatic system consists of nerves that connect the brain and spinal cord with muscles and sensory receptors in the skin.
The basic unit of the nervous system is the "nerve cell," called "neuron
The wavelength, which represents the size of the smallest detectable detail that uses ultraviolet light , is calculated as follows: 3×
/ 1.72×
or approximately 1.74×
m.
The distance between the two positive, two negative, or two minimal points on the waveform is known as the wavelength of the wave. The following formula expresses the relationship between the frequency and wavelength of light:
f = c / λ
where, f = frequency of light
c = speed of light
λ = wavelength of light
Given data = f = 1.72×
Hz
Therefore, λ = 3×
/ 1.72×
λ = 1.74×
m
The wavelength, which represents the size of the smallest detectable detail that uses ultraviolet light , is calculated as follows: 3×
/ 1.72×
or approximately 1.74×
m.
Learn more about light here;
brainly.com/question/15200315
#SPJ4
To develop this problem it is necessary to use the equations of description of the simple harmonic movement in which the acceleration and angular velocity are expressed as a function of the Amplitude.
Our values are given as


The angular velocity of a body can be described as a function of frequency as



PART A) The expression for the maximum angular velocity is given by the amplitude so that



PART B) The maximum acceleration on your part would be given by the expression



Answer:
5.03 m
Explanation:
The wavelength of a wave is given by

where
v is the speed of the wave
f is the frequency of the wave
For the sonar signal in this problem,


Substituting into the equation, we find the wavelength:

The final speed of the orange is 7.35 m/s
Explanation:
The motion of the orange is a free fall motion, since there is only the force of gravity acting on it. Therefore, it is a uniformly accelerated motion with constant acceleration
towards the ground. So we can use the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time elapsed
For the orange in this problem, we have
u = 0 (it is dropped from rest)
is the acceleration
Substituting t = 0.75 s, we find the final velocity (and speed) of the orange:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly