Answer:
The answer is: The increased voltage causes an increase in power usage, and the device will over-heat.
Explanation:
First, we must consider the variables of the electrical system that will allow us to respond. In this case, power, current and voltage, which are related by

Where P=Power, V=Voltage, I=Current.
In the equation it can be observed that power is directly proportional to the system voltage. Thus, if the voltage increases as in this case, the power will also increase, which overheats the device and can cause damage to it.
<span>As per the second law of thermodynamics, when the energy gets converted from one form to another in a physical or chemical change, then the energy which we get as result of change is of lower quality or usability of such energy is less.</span>
Answer: Work Done would remain same.
Let us assume that the velocity is constant while taking the load up the inclined plane. Then, the kinetic energy would remain the same. This is because kinetic energy is dependent on velocity
. If that is constant, the kinetic energy would remain same. The potential energy is dependent on the height
. If the height is changed, then potential energy varies. In the question, it is mentioned that without changing the height, the length of the inclined plane is changed. Therefore, the potential energy would be same as before.
We know, work done is equal to potential energy plus kinetic energy. Since there is no change in any of these, the required work done would not change.
Answer:
Option C is correct
Explanation:
A supersaturated solution is one that has more solute dissolved than the solution should hold at that temperature.
Examples include carbonated water, sugar syrup, honey.
A solution of a chemical compound can be dissolved in heated water to prepare a supersaturated solution. A solution becomes supersaturated as its temperature is changed.