1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vsevolod [243]
3 years ago
10

Define newton's first law and provide an example​

Physics
2 answers:
il63 [147K]3 years ago
8 0

Answer:

Newton's first law states all objects have inertia, or resistance to change motion. Example: the car that breaks abruptly.

Lynna [10]3 years ago
6 0

Answer:

An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.

Explanation:

When an athlete tries to stop his career, it takes several meters to stop completely, due to the inertia produced.

When trying to push a car, at first it is very difficult, because, due to inertia, the car tends to remain still.  But once it is put into motion, the effort is much less to be done, since then inertia causes it to keep moving.

You might be interested in
0/2 File Limit
slamgirl [31]

Answer:

Speed at which it will reach the ground is given as

v_f = 46.8 m/s

Total time for which it will remain in air is given as

t = 6.3 s

Explanation:

As we know that the object is projected upwards with speed

v_i = 15 m/s

g = - 9.81 m/s^2

now when it will reach the ground then we have

y = v_y t + \frac{1}{2} at^2

so we have

-100 = 15 t - \frac{1}{2}(-9.81) t^2

4.905 t^2 - 15 t - 100 = 0

so we have

t = 6.3 s

Now speed of the object when it reaches the ground is given as

v_f = v_i + at

v_f = -15 + (9.81)(6.3)

v_f = 46.8 m/s

8 0
3 years ago
Which planet is to humankind?
Maslowich
Earth. Only. Any other known planets are inapplicable.
3 0
3 years ago
Help plzzz!!! I only have 10 minutes to turn in
Lostsunrise [7]
  • The mechanic did 5406 Joules of work pushing the car.

That's the energy he put into the car.  When he stops pushing, all the energy he put into the car is now the car's kinetic energy.

  • Kinetic energy = (1/2) (mass) (speed²)

And there we have it

  • The car's mass is 3,600 kg.
  • Its speed is 'v' m/s .
  • (1/2) (mass) (v²) =  5,406 Joules

(1/2) (3600 kg) (v²) = 5406 joules

1800 kg (v²) = 5406 joules

v² = (5406 joules) / (1800 kg)

v² = (5406/1800) (joules/kg)

= = = = = This section is just to work out the units of the answer:

  • v² = (5406/1800) (Newton-meter/kg)
  • v² = (5406/1800) (kg-m²/s²  /  kg)
  • v² = (5406/1800)  (m²/s²)

= = = = =

v = √(5406/1800)  m/s

<em>v = 1.733 m/s</em>

4 0
3 years ago
A dockworker loading crates on a ship finds that a 21-kg crate, initially at rest on a horizontal surface, requires a 73-N horiz
Nataliya [291]

1) Static friction coefficient: 0.355

The crate is initially at rest. The crate remains at rest until the horizontal pushing force is less than the maximum static frictional force.

The maximum static frictional force is given by

F_s = \mu_s mg

where

\mu_s is the static coefficient of friction

m = 21 kg is the mass of the crate

g = 9.8 m/s^2 is the acceleration due to gravity

The horizontal force required to set the crate in motion is 73 N: this means that this is the value of the maximum static frictional force. So we have

F_s=73 N

Using this information into the previous equation, we can find the coefficient of static friction:

\mu_s = \frac{F}{mg}=\frac{73 N}{(21 kg)(9.8 m/s^2)}=0.355

2) Kinetic friction coefficient: 0.267

Now the crate is in motion: this means that the kinetic friction is acting on the crate, and its magnitude is

F_k = \mu_k mg (1)

where

\mu_k is the coefficient of kinetic friction

There is a horizontal force of

F = 55 N

pushing the crate. Moreover, the speed of the crate is constant: this means that the acceleration is zero, a = 0.

So we can write Newton's second law as

F-F_k = ma = 0

And by substituting (1), we can find the value of the coefficient of kinetic friction:

F-\mu_k mg = 0\\\mu_k = \frac{F}{mg}=\frac{55 N}{(21 kg)(9.8 m/s^2)}=0.267

5 0
3 years ago
How does reducing the mass of a moving object by half (1/2) change its kinetic energy?​
allochka39001 [22]
Kinetic energy = 1/2 m v²
If we reduce the mass by half > m/2
Kinetic energy = 1/2 m/2 v²
We should know that 1/2 × 1/2 = 1/4
So kinetic energy will be :
1/4 × m × v²
7 0
3 years ago
Other questions:
  • Phileas Fogg, the character who went around the world in 80 days, was very fussy about his bathwater temperature. It had to be e
    8·1 answer
  • Convert 525 pounds to kilograms using dimensional analysis setup
    11·1 answer
  • Why must mine tailings be stored and disposed of carefully?
    13·1 answer
  • A series circuit consists of a 100-ω resistor, a 10.0-μf capacitor, and a 0.350-h inductor. the circuit is connected to a 120-v
    13·1 answer
  • A bicycle accelerates from rest to 6 m/s in 2 s. What is the bicycle's acceleration?
    11·2 answers
  • A 0.300 kg ball, moving with a speed of 2.5 m/s, has a head-on collision with at 0.600 kg ball initially at rest. Assuming a per
    14·1 answer
  • A particle with charge 3.01 µC on the negative x axis and a second particle with charge 6.02 µC on the positive x axis are each
    13·1 answer
  • What is the frequency of a wave with the speed of 550nm/s and wavelength of 15nm​
    10·1 answer
  • 1. Which of the following statement is correct?
    14·2 answers
  • 3. What is the acceleration of a car at rest that stays at rest over 10 seconds?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!