Answer:

Explanation:
Since the surface is frictionless, momentum will be conserved. If the bullet of mass
has an initial velocity
and a final velocity
and the block of mass
has an initial velocity
and a final velocity
then the initial and final momentum of the system will be:


Since momentum is conserved,
, which means:

We know that the block is brought to rest by the collision, which means
and leaves us with:

which is the same as:

Considering the direction the bullet moves initially as the positive one, and writing in S.I., this gives us:

So kinetic energy of the bullet as it emerges from the block will be:

Answer:
v=0.04m/s
Explanation:
To solve this problem we have to take into account the expression

where v and r are the magnitudes of the velocity and position vectors.
By calculating the magnitude of r and replacing w=0.02rad/s in the formula we have that

the maximum relative velocity is 0.04m/s
hope this helps!!
As per the question the distance of venus from sun is given as 0.723 AU
We have been asked to calculate the time period of the planet venus.
As per kepler's laws of planetary motion the square of time period of planet is directly proportional to the cube of semi major axis. mathematically

⇒
where is k is the proportionality constant
We may solve this problem by comparing with the time period of the earth . We know that time period of earth is 365.5 days
Hence
The distance of sun from earth is taken as 1 AU i.e the mean distance of earth from sun
Hence 
The distance of venus from sun is 0.723 AU i.e
From keplers law we know that-
⇒
Putting the values mentioned above we get-

⇒
⇒
Hence the time period of venus is 224.388352752710 days
Answer:
its Y because the dot that represents it is close to S
<span>It is measured in calories </span>