1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fittoniya [83]
3 years ago
10

The magnitude of an electron's charge is e=1.60\times 10^{-19}\,\text{C}e=1.60×10 −19 Ce, equals, 1, point, 60, times, 10, start

superscript, minus, 19, end superscript, start text, C, end text. What could be a reasonable conclusion about this result?
Physics
1 answer:
Tresset [83]3 years ago
8 0

Answer:

Explanation:

Conclusion is simple you can just say that it is the value written in words form only.

Nothing else is written about it

You might be interested in
g An electron enters a region of space containing a uniform 1.63 × 10 − 5 T magnetic field. Its speed is 121 m/s and it enters p
kolbaska11 [484]

Answer:

i. The radius 'r' of the electron's path is 4.23 × 10^{-5} m.

ii. The frequency 'f' of the motion is 455.44 KHz.

Explanation:

The radius 'r' of the electron's path is called a gyroradius. Gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field.

                 r = \frac{mv}{qB}

Where: B is the strength magnetic field, q is the charge, v is its velocity and m is the mass of the particle.

From the question, B = 1.63 × 10^{-5}T, v = 121 m/s, Θ = 90^{0} (since it enters perpendicularly to the field), q = e  = 1.6 × 10^{-19}C and m = 9.11 × 10^{-31}Kg.

Thus,

         r = \frac{mv}{qB} ÷ sinΘ

But,  sinΘ =  sin 90^{0} = 1.

So that;

          r = \frac{mv}{qB}

            = (9.11 × 10^{-31} × 121) ÷ (1.6 × 10^{-19}  × 1.63 × 10^{-5})

            = 1.10231 × 10^{-28}   ÷ 2.608 × 10^{-24}

            = 4.2266 × 10^{-5}

            = 4.23 × 10^{-5} m

The radius 'r' of the electron's path is 4.23 × 10^{-5} m.

B. The frequency 'f' of the motion is called cyclotron frequency;

           f = \frac{qB}{2\pi m}

             =  (1.6 × 10^{-19}  × 1.63 × 10^{-5}) ÷ (2 ×\frac{22}{7} × 9.11 × 10^{-31})

             =  2.608 × 10^{-24} ÷  5.7263 × 10^{-30}

             = 455442.4323

          f  = 455.44 KHz

The frequency 'f' of the motion is 455.44 KHz.

3 0
4 years ago
Read 2 more answers
A hollow cylinder that is rolling without slipping is given a velocity of 5.0 m/s and rolls up an incline to a vertical height o
inysia [295]

Answer:

The hollow cylinder rolled up the inclined plane by 1.91 m

Explanation:

From the principle of conservation of mechanical energy, total kinetic energy = total potential energy

M.E_T = \frac{1}{2}mv^2 + \frac{1}{2} I \omega^2 + mgh

The total energy at the bottom of the inclined plane = total energy at the top of the inclined plane.

\frac{1}{2}mv_i^2 + \frac{1}{2} I \omega_i^2 + mg(0) =  \frac{1}{2}mv_f^2 + \frac{1}{2} I \omega_f^2 + mgh

moment of inertia, I, of a hollow cylinder = ¹/₂mr²

substitute for I in the equation above;

\frac{1}{2}mv_i^2 + \frac{1}{2} (\frac{1}{2}mr^2  \omega_i^2) =  \frac{1}{2}mv_f^2 + \frac{1}{2} (\frac{1}{2}mr^2  \omega_f^2) + mgh\\\\ but \ v = r \omega\\\\\frac{1}{2}mv_i^2 + \frac{1}{2} (\frac{1}{2}m v_i^2  ) =  \frac{1}{2}mv_f^2 + \frac{1}{2} (\frac{1}{2}m v_f^2) + mgh\\\\\frac{1}{2}mv_i^2 +\frac{1}{4}mv_i^2 = \frac{1}{2}mv_f^2 +\frac{1}{4}mv_f^2 +mgh\\\\\frac{3}{4}mv_i^2 = \frac{3}{4}mv_f^2 +mgh\\\\mgh = \frac{3}{4}mv_i^2 -  \frac{3}{4}mv_f^2\\\\gh = \frac{3}{4}v_i^2 -  \frac{3}{4}v_f^2\\\\

h = \frac{3}{4g}(v_1^2 -v_f^2)

given;

v₁ = 5.0 m/s

vf = 0

g = 9.8 m/s²

h = \frac{3}{4g}(v_1^2 -v_f^2) =\frac{3}{4*9.8}(5^2 -0) = 1.91 \ m

Therefore, the hollow cylinder rolled up the inclined plane by 1.91 m

5 0
3 years ago
True or False:
mart [117]
This is a true statement
3 0
3 years ago
Read 2 more answers
1. What type of wave is sound? Does sound need a medium (substance) to travel through?
denpristay [2]

Answer:

1. What type of wave is sound?

2.Does sound need a medium to travel through?

3. What are the properties of sound waves?

Explanation:

1. The type of waves sound are is mechanical waves.


2. Sound needs a solid, liquid or gas (material medium) to travel through.


3. I believe they are wavelength, amplitude, frequency, time period and velocity. 


I apologize if it is incorrect-

I hope it helps! Have a great day!

Anygays-

6 0
2 years ago
QUESTION 1
mario62 [17]
It's D. If it absorbed it would be turning to steam. I am taking honors chem in high school we are learning this.
7 0
3 years ago
Read 2 more answers
Other questions:
  • In order to be considered work, the components that must be present are?..
    11·2 answers
  • Wilam made a chart to summarize the results of experiments with the photoelectric effect. Which best describes how to correct Wi
    16·2 answers
  • The Earth rotates on its axis every __________ and revolves around the Sun every __________.
    15·2 answers
  • An object with a temperature of 0 Kelvin would not emit radiation.<br> a. True<br> b. False
    12·2 answers
  • What gives an object gravity?
    11·1 answer
  • Suppose a mad scientist went back in time to the beginning of the solar system and caused the newly formed Mars and Venus to swi
    6·1 answer
  • How do I solve for this?
    11·1 answer
  • A 90.0 kg person is being pulled away from a burning building as shown in the figure below.
    11·1 answer
  • Why is acceleration not constant near the speed of light
    14·1 answer
  • Which force is represented by the arrow at A?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!