Answer:U(x) = 30x^2 +6x^3
V^2=8.28m/s
Explanation:The law of conservation of energy is given by K1+U1= K2+U2 ...eq 1
Kinetic energy K.E= 1/2 mv^2
Restoring force function F(x)= -60x - 18x^2
But F(x)= -dU/dx
dU(x)=-F(x)dx
Integrating U(x)= -integral F(x)dx + U(0)
Substituting, we get
U(x) = - integral(-60x-18x^2)dx+U(0)
U(x)= 30x^2+6x^3+U(0)
U=0 at x=0
Therefore U(x)= 30x^2+6x^3
b) Given : x1=1.00m,x2= 0.50m ,V1=0, V2=?
Substituting into eq (a)
U1= 30(1.00)^2+6(1.00)^3=36J
Using x2=0.5 into eq(a)
U2=30(0.50)^2+6(0.50)^3=8.25J
Object at rest K1=0
0+36=K2+8.25
K2=27.75J
Given; m =0.900kg, V2=?
27.75=1/2×0.900×V2^2
V2= SQRT(2×27.75)/0.81
V2= 8.28m/s
Here, we are required to determine which combination of molecules will produce ammonia with no leftovers.
Option A: 2N2 and 6H2 is the correct combination of molecules that will produce ammonia with no leftovers.
First, it is important to know that both Nitrogen and Hydrogen used in the production of ammonia are diatomic.
Secondly, Nitrogen and Hydrogen are in the ratio 1 : 3.....
As such, the coefficient of hydrogen should be thrice that of Nitrogen to ensure that there are no leftovers.
Therefore, option A which has:
2N2 and 6H2 is the correct combination of molecules that will produce ammonia with no leftovers.
Read more:
brainly.com/question/24396848
You have to solve this by using the equations of motion:
u=3
v=0
s=2.5
a=?
v^2=u^2+2as
0=9+5s
Giving a=-1.8m/s^2
Then using the equation:
F=ma
F is the frictional force as there is no other force acting and its negative as its in the opposite direction to the direction of motion.
-F=25(-1.8)
F=45N
Then use the formula:
F=uR
Where u is the coefficient of friction, R is the normal force and F is the frictional force.
45=u(25g)
45=u(25*10)
Therefore, the coefficient of friction is 0.18
Hope that helps
Answer:

Explanation:
This work done is in the form of Potential Energy so we'll use the formula of Potential Energy.
<u>Given Data:</u>
Mass = m = 250 kg
Acceleration due to gravity = g = 9.8 m/s²
Height = h = 6 m
<u>Required:</u>
Work Done in the form of Potential Energy = P.E. = ?
<u>Formula:</u>
P.E. = mgh
<u>Solution:</u>
P.E. = (250)(9.8)(6)
P.E. = 14700 Joules
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>