The frequency of rotation of Mars is 0.0000113 Hertz.
<u>Given the following data:</u>
- Period = 1 day and 37 minutes.
To find the frequency of rotation in Hertz:
First of all, we would convert the the value of period in days and minutes to seconds because the period of oscillation of a physical object is measured in seconds.
<u>Conversion:</u>
1 day = 24 hours
24 hours to minutes =
×
=
minutes

1 minute = 60 seconds
1477 minute = X seconds
Cross-multiplying, we have:
× 
X = 88620 seconds
Now, we can find the frequency of rotation of Mars by using the formula:

<em>Frequency </em><em>of rotation</em> = <em>0.0000113 Hertz</em>
Therefore, the frequency of rotation of Mars is 0.0000113 Hertz.
Read more: brainly.com/question/14708169
Answer:

Explanation:
The change in potential energy can be expressed as:

where K is a constant with a value of
, q1 and q2 are the charges of the proton and the electron and r is the distance between them.
The charge for the proton is
and the charge for the electron is
.
Converting r=1.0nm to m:

Replacing values:


Answer:
“Insanity is relative. It depends on who has who locked in what cage.” R.D. Laing: “Insanity – a perfectly rational adjustment to an insane world.” Nora Ephron: “Insane people are always sure that they are fine. It is only the sane people who are willing to admit that they are crazy.”Sep 20, 2012
Explanation:
HIV can be contracted from contact with bloodborne pathogens.
Other bloodborne diseases are HBV, malaria, syphilis and brucellosis
<h3>What are bloodborne pathogens?</h3>
Bloodborne pathogens can be defined as those microorganisms or pathogenic organisms that cause disease and are present in human blood.
Blood borne pathogens can also be contacted through the following means
- Se- xual contact
- Needle contact
In conclusion; HIV can be contracted from contact with bloodborne pathogens.
Learn more about bloodborne pathogens:
brainly.com/question/13158004
#SPJ1
Answer:
Explanation:
When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced.