Answer:
volumetric flow rate = 
Velocity in pipe section 1 = 
velocity in pipe section 2 = 12.79 m/s
Explanation:
We can obtain the volume flow rate from the mass flow rate by utilizing the fact that the fluid has the same density when measuring the mass flow rate and the volumetric flow rates.
The density of water is = 997 kg/m³
density = mass/ volume
since we are given the mass, therefore, the volume will be mass/density
25/997 = 
volumetric flow rate = 
Average velocity calculations:
<em>Pipe section A:</em>
cross-sectional area =

mass flow rate = density X cross-sectional area X velocity
velocity = mass flow rate /(density X cross-sectional area)

<em>Pipe section B:</em>
cross-sectional area =

mass flow rate = density X cross-sectional area X velocity
velocity = mass flow rate /(density X cross-sectional area)

Answer:
88750 N
Explanation:
given data:
plastic deformation σy=266 MPa=266*10^6 N/m^2
cross-sectional area Ao=333 mm^2=333*10^-6 m^2
solution:
To determine the maximum load that can be applied without
plastic deformation (Fy).
Fy=σy*Ao
=88750 N
Answer:
189.15cy
Explanation:
To understand this problem we need to understand as well the form.
It is clear that there is four wall, two short and two long.
The two long are 
The two long are 
The two shors are 
The height and the thickness are 14ft and 0.83ft respectively.
So we only calculate the Quantity of concrete,
![Q_c = [(2*122.08)+(2*86-375)]*14*0.833\\Q_c=4864.02ft^3](https://tex.z-dn.net/?f=Q_c%20%3D%20%5B%282%2A122.08%29%2B%282%2A86-375%29%5D%2A14%2A0.833%5C%5CQ_c%3D4864.02ft%5E3)
That in cubic yards is equal to 
Hence, we need order 5% plus that represent with the quantity

Answer:
All of the above
Explanation:
firstly, a creep can be explained as the gradual deformation of a material over a time period. This occurs at a fixed load with the temperature the same or more than the recrystallization temperature.
Once the material gets loaded, the instantaneous creep would start off and it is close to electric strain. in the primary creep area, the rate of the strain falls as the material hardens. in the secondary area, a balance between the hardening and recrystallization occurs. The material would get to be fractured hen recrstallization happens. As temperature is raised the recrystallization gets to be more.