If a controlled input can transfer (alter) the control system's initial states to some other desired states in a finite amount of time, the control system is said to be controllable.
Using Kalman's test, we can determine whether a control system is controllable. The evolution model for the state variables (time-varying unknowns) and the observation model, which connects the observations to the state variables, make up the state space representation of a dynamical system. The capacity to move a system about in its full configuration space using just specific permitted actions is generally referred to as controllability. The precise definition changes slightly depending on the model type or framework used.
Learn more about control here-
brainly.com/question/28540307
#SPJ4
Answer:
(4.5125 * 10^-3 kg.m^2)ω_A^2
Explanation:
solution:
Moments of inertia:
I = mk^2
Gear A: I_A = (1)(0.030 m)^2 = 0.9*10^-3 kg.m^2
Gear B: I_B = (4)(0.075 m)^2 = 22.5*10^-3 kg.m^2
Gear C: I_C = (9)(0.100 m)^2 = 90*10^-3 kg.m^2
Let r_A be the radius of gear A, r_1 the outer radius of gear B, r_2 the inner radius of gear B, and r_C the radius of gear C.
r_A=50 mm
r_1 =100 mm
r_2 =50 mm
r_C=150 mm
At the contact point between gears A and B,
r_1*ω_b = r_A*ω_A
ω_b = r_A/r_1*ω_A
= 0.5ω_A
At the contact point between gear B and C.
At the contact point between gears A and B,
r_C*ω_C = r_2*ω_B
ω_C = r_2/r_C*ω_B
= 0.1667ω_A
kinetic energy T = 1/2*I_A*ω_A^2+1/2*I_B*ω_B^2+1/2*I_C*ω_C^2
=(4.5125 * 10^-3 kg.m^2)ω_A^2
Answer:
1.The velocity of fluid
2.Fluid properties.
3.Projected area of object(geometry of the object).
Explanation:
Drag force:
Drag force is a frictional force which offered by fluid when a object is moving in it.Drag force try to oppose the motion of object when object is moving in a medium.
Drag force given as

So we can say that drag force depends on following properties
1.The velocity of fluid
2.Fluid properties.
3.Projected area of object(geometry of the object).
Back burning, starting fires infront of the main fire to prevent the fire from spreading and depleting fuel for the fire, digging trenches so the fire has no where to go, dropping water from planes or helicopters.