1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha2012 [34]
3 years ago
12

The diffusion coefficients for species A in metal B are given at two temperatures:

Engineering
1 answer:
Kruka [31]3 years ago
5 0

Answer:

a) 149 kJ/mol, b) 6.11*10^-11 m^2/s ,c) 2.76*10^-16 m^2/s

Explanation:

Diffusion is governed by Arrhenius equation

D = D_0e^{\frac{-Q_d}{RT} }

I will be using R in the equation instead of k_b as the problem asks for molar activation energy

I will be using

R = 8.314\ J/mol*K

and

°C + 273 = K

here, adjust your precision as neccessary

Since we got 2 difusion coefficients at 2 temperatures alredy, we can simply turn these into 2 linear equations to solve for a) and b) simply by taking logarithm

So:

ln(6.69*10^{-17})=ln(D_0) -\frac{Q_d}{R*(1030+273)}

and

ln(6.56*10^{-16}) = ln(D_0) -\frac{Q_d}{R*(1290+273)}

You might notice that these equations have the form of  

d=y-ax

You can solve this equation system easily using calculator, and you will eventually get

D_0 =6.11*10^{-11}\ m^2/s\\ Q_d=1.49 *10^3\ J/mol

After you got those 2 parameters, the rest is easy, you can just plug them all   including the given temperature of 1180°C into the Arrhenius equation

6.11*10^{-11}e^{\frac{149\ 000}{8.143*(1180+273)}

And you should get D = 2.76*10^-16 m^/s as an answer for c)

You might be interested in
A new approval process is being adapted by Ursa Major Solar. After an opportunity has been approved, the contract is sent to the
BigorU [14]
Install an app :] i think lol
4 0
3 years ago
Lockheed Martin Skunk Works designs and produces aircraft for defense using rapid prototyping tools
Leni [432]
Answer true


Explanation
4 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
Technician A says that 5W-30 would be better to use than 20W-50 in most vehicles in
shtirl [24]
Technician is correct sorry if im wronghg
5 0
3 years ago
Read 2 more answers
To compute the energy used by a motor, multiply the power that it draws by the time of operation. Con- sider a motor that draws
ehidna [41]

Answer:

E=52000Hp.h

E=38724920Wh

E=1.028x10^11 ftlb

Explanation:

To solve this problem you must multiply the engine power by the time factor expressed in h / year, to find this value you must perform the conventional unit conversion procedure.

Finally, when you have the result Hp h / year you convert it to Ftlb and Wh

E=(12.5hp)(\frac{16h}{day} )(\frac{5 days}{week} )(\frac{52week}{year} )\\

E=52000Hp.h

E=52000Hp.h(\frac{744.71Wh}{Hp.h} )\\

E=38724920Wh

E=52000Hph(\frac{1977378.4  ft lb}{1Hph}

E=1.028x10^11 ftlb

3 0
3 years ago
Other questions:
  • I have a plot plan with an angle of 35 degrees on the main lot, how will this affect the construction of the basement
    9·1 answer
  • A 6cm OD, 2cm thick copper hollow sphere [k=386W/m.C] is uniformly heated at the inner surface at a rate of 150W/m2. The outside
    6·1 answer
  • For ceramic-matrix composites, high interfacial strength is desirable. ( True , False )
    8·1 answer
  • In a reversible process both the system and surrondings can be returned to their initial states. a)-True b)-False
    14·1 answer
  • The grade is a measure of quality and it captures concentration levels (i.e., how pure a certain fraction is). If grade captures
    13·1 answer
  • Please what is dif<br>ference between building technology and building engineering.​
    14·2 answers
  • Work to be performed can come from the work package level of the work breakdown structure as well as other sources. Which of the
    11·1 answer
  • scrapers are used to haul dirt from a borrow pit to the cap of a landfill. the estimated cycle time for the scrapers is 9.5 minu
    14·1 answer
  • How to engineering equation solving
    12·1 answer
  • What is shown in the above figure
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!