1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_tiger [21]
3 years ago
15

What is the answer to this fraction 260/290=

Mathematics
2 answers:
Tcecarenko [31]3 years ago
8 0

260 \div 290
0.89
If you round the number it would be 0.9
VARVARA [1.3K]3 years ago
8 0
8 with a remainder of 28
You might be interested in
Express your final answer in simplest form 3/5 + -7/8
frez [133]

Answer:

- 0.5

Step-by-step explanation:

you first change the fractions numbers  in to decimal form

      so;   2/5 = 0.4

               -7/8 = - 0.875

hence;   0.4 + (-0.875)

             = - 0.475

in to its simplest form   =  - 0.5

  the answer is - 0.5

5 0
2 years ago
What kind of problem is this?
strojnjashka [21]
4x - 7 < 17
    + 7   + 7
     4x < 24
      4      4
       x < 6

Solution Set: (6, ∞) and {x|x < 6}
8 0
3 years ago
The angles of a quadrilateral measures 80 degrees 100 degrees 100 degrees in this order. What kind of quadrilateral has this sha
bija089 [108]
A parallelogram

Because...
-opposite angles are congruent
-four sides
-angles must equal 360
       100 + 100 +80 + y = 360

       280 + y = 360

       y = 80
-the angle we don't know is 80 degrees


8 0
3 years ago
How to do the inverse of a 3x3 matrix gaussian elimination.
nata0808 [166]

As an example, let's invert the matrix

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}

We construct the augmented matrix,

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

On this augmented matrix, we perform row operations in such a way as to transform the matrix on the left side into the identity matrix, and the matrix on the right will be the inverse that we want to find.

Now we can carry out Gaussian elimination.

• Eliminate the column 1 entry in row 2.

Combine 2 times row 1 with 3 times row 2 :

2 (-3, 2, 1, 1, 0, 0) + 3 (2, 1, 1, 0, 1, 0)

= (-6, 4, 2, 2, 0, 0) + (6, 3, 3, 0, 3, 0)

= (0, 7, 5, 2, 3, 0)

which changes the augmented matrix to

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

• Eliminate the column 1 entry in row 3.

Using the new aug. matrix, combine row 1 and 3 times row 3 :

(-3, 2, 1, 1, 0, 0) + 3 (1, 1, 1, 0, 0, 1)

= (-3, 2, 1, 1, 0, 0) + (3, 3, 3, 0, 0, 3)

= (0, 5, 4, 1, 0, 3)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 5 & 4 & 1 & 0 & 3 \end{array} \right]

• Eliminate the column 2 entry in row 3.

Combine -5 times row 2 and 7 times row 3 :

-5 (0, 7, 5, 2, 3, 0) + 7 (0, 5, 4, 1, 0, 3)

= (0, -35, -25, -10, -15, 0) + (0, 35, 28, 7, 0, 21)

= (0, 0, 3, -3, -15, 21)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 3 & -3 & -15 & 21 \end{array} \right]

• Multiply row 3 by 1/3 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 3 entry in row 2.

Combine row 2 and -5 times row 3 :

(0, 7, 5, 2, 3, 0) - 5 (0, 0, 1, -1, -5, 7)

= (0, 7, 5, 2, 3, 0) + (0, 0, -5, 5, 25, -35)

= (0, 7, 0, 7, 28, -35)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 0 & 7 & 28 & -35 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 2 by 1/7 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 2 and 3 entries in row 1.

Combine row 1, -2 times row 2, and -1 times row 3 :

(-3, 2, 1, 1, 0, 0) - 2 (0, 1, 0, 1, 4, -5) - (0, 0, 1, -1, -5, 7)

= (-3, 2, 1, 1, 0, 0) + (0, -2, 0, -2, -8, 10) + (0, 0, -1, 1, 5, -7)

= (-3, 0, 0, 0, -3, 3)

\left[ \begin{array}{ccc|ccc} -3 & 0 & 0 & 0 & -3 & 3 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 1 by -1/3 :

\left[ \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

So, the inverse of our matrix is

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}^{-1} = \begin{bmatrix}0&1&-1\\1&4&-5\\-1&-5&7\end{bmatrix}

6 0
2 years ago
Need Help ASAP Will Mark Brainliest
N76 [4]

Answer:

Irrational:

3√25, √256, √141

Rational:1.1625, 5.516...

Step-by-step explanation:

8 0
2 years ago
Other questions:
  • HURRY DUE IN 20 MINUTES Use the rules of exponents to simplify the expressions. Match the expression with its equivalent value.
    13·1 answer
  • Jeremy cleans his house in 2 1/2 hours.hunter cleans his house in 3 1/4 hours.how much longer does it take for Jeremy to clean h
    15·2 answers
  • What is the solution to the inequality below?<br> X^2&gt;=81
    15·1 answer
  • Let V be the volume of the solid obtained by rotating about the y-axis the region bounded y = 25x and y = x2 25 . Find V by slic
    13·1 answer
  • What is a Corollary?<br><br> Thxxx
    6·1 answer
  • Please help me i dont get it at all
    10·1 answer
  • As many points as I can give and a brainliest and a new friend, please help me!!!
    8·1 answer
  • Dinkle Company purchased equipment for $50,000. The equipment has an estimated residual value of $5,000 and an expected useful l
    8·1 answer
  • Need help with this thanks!!<br><br> (Image attached)
    12·1 answer
  • −11 ≤ −5; Add 16 to both sides<br><br> The resulting inequality is:
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!