Answer:
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Explanation:
Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.
Substituting the values of the variables into the equation, we have
ΔV = V₂ - V₁.
ΔV = 175 V - 33 V.
ΔV = 142 V
The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.
So, substituting the values of the variables into the equation, we have
ΔU = eΔV
ΔU = eΔV
ΔU = -1.602 × 10⁻¹⁹ C × 142 V
ΔU = -227.484 × 10⁻¹⁹ J
ΔU = -2.27484 × 10⁻²¹ J
ΔU ≅ -2.275 × 10⁻²¹ J
So, the required equation for the electric potential energy change is
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Yellow and red hope that helped
Tides are influenced by the force of gravity exerted by the earth, moon and the sun. The sun has a larger mass than the moon and as such has a greater gravitational pull on the earth. the moon however has greater influence over the tides because they are caused by the difference in gravity fields. This means that the moon is the dominant influence due to the fact that the fractional difference in its force across the earth is greater than that seen from the sun.
The answer is 7000 meters.