1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DiKsa [7]
3 years ago
14

to 10 Hz. Superimposed on this signal is 60-Hz noise with an amplitude of 0.1 V. It is desired to attenuate the 60-Hz signal to

less than 10% of its value using a Butterworth filter. Select a filter order to perform this task if the corner frequency is 10 Hz.
Physics
1 answer:
givi [52]3 years ago
7 0

Answer:

G \sqrt{1 +(\frac{f}{f_c})^{2n}} = 1

If we square both sides we got:

G^2 (1+\frac{f}{f_c})^{2n}= 1

We divide both sides by G^2 and we got:

(1+\frac{f}{f_c})^{2n} = \frac{1}{G^2}

Now we can apply log on both sides and we got:

2n ln(1+\frac{f}{f_c}) = ln (\frac{1}{G^2})

And solving for n we got:

n = \frac{ ln (\frac{1}{G^2})}{2ln(1+\frac{f}{f_c})}

And replacing we got:

n = \frac{ln (\frac{1}{0.1^2})}{2ln(1+\frac{60}{10})}

n = \frac{4.60517}{3.8918}=1.18

And since n needs to be an integer the correct answer would be n=2 for the filter order.

Explanation:

For this case we can use the formula for the Butterworth filter gain given by:

[tec] G = \frac{1}{\sqrt{1 +(\frac{f}{f_c})^{2n}}}[/tex]

Where:

G represent the transfer function and we want that G =0.1 since the desired signal is less than 10% of it's value

f_c = 10 Hz represent the corner frequency

f= 60 Hz represent the original frequency

n represent the filter order and that's the variable that we need to find

G \sqrt{1 +(\frac{f}{f_c})^{2n}} = 1

If we square both sides we got:

G^2 (1+\frac{f}{f_c})^{2n}= 1

We divide both sides by G^2 and we got:

(1+\frac{f}{f_c})^{2n} = \frac{1}{G^2}

Now we can apply log on both sides and we got:

2n ln(1+\frac{f}{f_c}) = ln (\frac{1}{G^2})

And solving for n we got:

n = \frac{ ln (\frac{1}{G^2})}{2ln(1+\frac{f}{f_c})}

And replacing we got:

n = \frac{ln (\frac{1}{0.1^2})}{2ln(1+\frac{60}{10})}

n = \frac{4.60517}{3.8918}=1.18

And since n needs to be an integer the correct answer would be n=2 for the filter order.

You might be interested in
Given the thermochemical equations X2+3Y2⟶2XY3ΔH1=−370 kJ X2+2Z2⟶2XZ2ΔH2=−120 kJ 2Y2+Z2⟶2Y2ZΔH3=−270 kJ Calculate the change in
Alchen [17]

Answer : The change in enthalpy of the reaction is, -310 kJ

According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.

According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.

The given main reaction is,

4XY_3+7Z_2\rightarrow 6Y_2Z+4XZ_2    \Delta H=?

The intermediate balanced chemical reaction will be,

(1) X_2+3Y_2\rightarrow 2XY_3     \Delta H_1=-370kJ

(2) X_2+2Z_2\rightarrow 2XZ_2    \Delta H_2=-120kJ

(3) 2Y_2+Z_2\rightarrow 2Y_2Z    \Delta H_3=-270kJ

Now we will reverse the reaction 1 and multiply reaction 1 by 2, reaction 2 by 2 and reaction 3 by 3 then adding all the equations, we get :

(1) 4XY_3\rightarrow 2X_2+6Y_2     \Delta H_1=2\times (+370kJ)=740kJ

(2) 2X_2+4Z_2\rightarrow 4XZ_2    \Delta H_2=2\times (-120kJ)=-240kJ

(3) 6Y_2+3Z_2\rightarrow 6Y_2Z    \Delta H_3=3\times (-270kJ)=-810kJ

The expression for enthalpy of formation of CH_4 will be,

\Delta H=\Delta H_1+\Delta H_2+\Delta H_3

\Delta H=(+740kJ)+(-240kJ)+(-810kJ)

\Delta H=-310kJ

Therefore, the change in enthalpy of the reaction is, -310 kJ

5 0
3 years ago
Find the ratio of the new/old periods of a pendulum if the pendulum were transported from earth to the moon, where the accelerat
vichka [17]
The period of a pendulum is given by
T=2 \pi  \sqrt{ \frac{L}{g} }
where L is the pendulum length and g is the gravitational acceleration.

We can write down the ratio between the period of the pendulum on the Moon and on Earth by using this formula, and we find:
\frac{T_m}{T_e} =  \frac{2 \pi  \sqrt{ \frac{L}{g_m} } }{2 \pi  \sqrt{ \frac{L}{g_e} } }=    \sqrt{ \frac{g_e}{g_m} }
where the labels m and e refer to "Moon" and "Earth".

Since the gravitational acceleration on Earth is g_e = 9.81 m/s^2 while on the Moon is g_m=1.63 m/s^2, the ratio between the period on the Moon and on Earth is
\frac{T_m}{T_e}= \sqrt{ \frac{g_e}{g_m} }= \sqrt{ \frac{9.81 m/s^2}{1.63 m/s^2} }=2.45

3 0
3 years ago
25. Explain why the speed of sound is faster in solids than in gases. Include two other factors Chapter 17 says the speed of sou
aksik [14]
In solids, particles or atom are very closely arranged compared to gasses. When these particles are arranged in such proximity, vibrations from sound are very easily transmitted from one particle to another in the solid. Hence, the sound vibrations can travel through the solid medium more quickly than through a gas medium.
Speed of sound also depends on its frequency and the wavelength.
7 0
3 years ago
HELP HELP HELP I WILL MARK AS BRAINLIEST
DIA [1.3K]

Answer:

sun, jupiter, earth, moon

Explanation:

how big they are

3 0
3 years ago
Read 2 more answers
A longitudinal wave is shown.<br> Which label identifies a rarefaction?
aev [14]

Answer:

B.

Explanation:

9 0
3 years ago
Other questions:
  • The downward acceleration of a falling body on Earth is 9.81m/s2. On the moon the same quantity is 1.62m/s2. An astronaut in a s
    6·1 answer
  • The period of an ocean wave is 5 seconds. What is the wave's frequency?
    14·1 answer
  • An archer fires and arrow while standing atop a 5.15 m tall wall. The arrow is fired at an angle of 55 degrees and has a launch
    8·1 answer
  • Two drag cars race. They line up at the starting line at rest. The winning car accelerates at a constant rate a and reaches the
    11·1 answer
  • Which type of electromagnetic waves has highest frequency​
    5·2 answers
  • Are stained glass windows transparent, opaque or translucent
    11·1 answer
  • Used to measure temperature
    12·1 answer
  • The diagram shows the Earth rotating on it's axis. The two star symbols show different locations on the surface... What would th
    8·2 answers
  • Answer this question i will mark you brainliest​
    15·1 answer
  • For the circuit shown in the figure(figure 1) find the current through each resistor. Express your answers using two significant
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!