Answer:
Time, t = 80 seconds
Explanation:
Given that,
The frequency of the oscillating mass, f = 1.25 Hz
Number of oscillations, n = 100
We need to find the time in which it makes 100 oscillations. We know that the frequency of an object is number of oscillations per unit time. It is given by :



t = 80 seconds
So, it will make 100 oscillations in 80 seconds. Hence, this is the required solution.
A small boy is playing with a ball on a stationary train. If he places the ball on the floor of the train, when the train starts moving the ball moves toward the back of the train. This happened due to inertia
An object at rest remains at rest, or if in motion, remains in motion unless a net external force acts on it .
When a train starts moving forward, the ball placed on the floor tends to fall backward is an example of inertia of rest. Due to the reason that the lower part of the ball is in contact with the surface and rest of the part is not . As the train starts moving, its lower part gets the motion as the floor starts moving but the upper part will remain as it is as it is not in contact with the floor , hence do not attain any motion due to the inertia of rest simultaneously i.e. it tends to remain at the same place.
To learn more about inertia here :
brainly.com/question/11049261
#SPJ1
The Impulse delivered to the baseball is 89 kgm/s.
To solve the problem above, we use the formula of impulse.
⇒ Formula:
- I = m(v-u)................. Equation 1
Where:
- I = Impulse delivered to the baseball
- m = mass of the baseball
- v = Final velocity of the baseball
- u = initial speed of the baseball
From the question,
⇒ Given:
- m = 0.8 kg
- u = 67 m/s
- v = -44 m/s
⇒ Substitute these values into equation 1
- I = 0.8(-44-67)
- I = 0.8(-111)
- I = -88.8
- I ≈ -89 kgm/s
Note: The negative tells that the impulse is in the same direction as the final velocity and therefore can be ignored.
Hence, The Impulse delivered to the baseball is 89 kgm/s.
Learn more about impulse here: brainly.com/question/7973509
Answer:
<h2>39.2 m</h2>
Explanation:
The height of the hill side can be found by using the formula

p is the potential energy
m is the mass
From the question we have

We have the final answer as
<h3>39.2 m</h3>
Hope this helps you