Substance A would have a delta T (change in temp) rise 1/2 the rise in substance B.
Q=mc x delta T
Q= heat energy in Joules
m= mass of substance heated or cooled
c= specific heat
ΔT is change in temp.
Solve for change in temp=. Q/mc
Specific heat and mass are not inversely proportional to heat energy input.
Putting into real world scenario of using water to heat a building.
Specific heat of water is 1.
It takes 1 btu to raise one pound of water 1 degF. at a base of 60 degF
Acetone specific heat is .51
So it takes half the amount of heat input to get a 100 degree ΔT, as compared to water.
Answer: I = 111.69 pA
Explanation: The hall effect is all about the fact that when a semiconductor is placed perpendicularly to a magnetic field, a voltage is generated which could be measured at right angle to the current path. This voltage is known as the hall voltage.
The hall voltage of a semiconductor sensor is given below as
V = I×B/qnd
Where V = hall voltage = 1.5mV =1.5/1000=0.0015V
I = current =?,
n= concentration of charge (electron density) = 5.8×10^20cm^-3 = 5.8×10^20/(100)³ = 5.8×10^14 m^-3
q = magnitude of an electronic charge=1.609×10^-19c
B = strength of magnetic field = 5T
d = thickness of sensor = 0.8mm = 0.0008m
By slotting in the parameters, we have that
0.0015 = I × 5/5.8×10^14 × 1.609×10^-19×0.0008
0.0015 = I×5/7.446×10^-8
I = (0.0015 × 7.446×10^-8)/5
I = 111.69*10^(-12)
I = 111.69 pA
11.3 Electromagnetic spectrum (ESADK)
EM radiation is classified into types according to the frequency of the wave: these types include, in order of increasing frequency, radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.
Answer:
I think its 9.0397 Ohms
Explanation:
take the reciprocal of all the resistances: 1/15, 1/65, 1/35
then add them: = 151/1365
then reciprocal the answer: =1365/151
And chuck it on a calculator: =9.04 Ohms
I think this is right but I'm not entirely sure. Tell me if I'm right by the way!